Different types of ligands compete in binding to polymers with different consequences for the physical and chemical properties of the resulting complex. Here, we derive a general kinetic model for the competitive binding kinetics of different types of ligands to a linear polymer, using the McGhee and von Hippel detailed binding-site counting procedure. The derived model allows the description of the competitive binding process in terms of the size of the ligand, binding, and release rates, and cooperativity parameters.
View Article and Find Full Text PDFLigands change the chemical and mechanical properties of polymers. In particular, single strand binding protein (SSB) non-specifically bounds to single-stranded DNA (ssDNA), modifying the ssDNA stiffness and the DNA replication rate, as recently measured with single-molecule techniques. SSB is a large ligand presenting cooperativity in some of its binding modes.
View Article and Find Full Text PDFThe aim of this work is to apply linear non-equilibrium thermodynamics to study the electrokinetic properties of three cation-exchange membranes of different structures in ethanol-water electrolyte solutions. To this end, liquid uptake and electro-osmotic permeability were estimated with potassium chloride ethanol-water solutions with different ethanol proportions as solvent. Current-voltage curves were also measured for each membrane system to estimate the energy dissipation due to the Joule effect.
View Article and Find Full Text PDFLigand binding to polymers modifies the physical and chemical properties of the polymers, leading to physical, chemical, and biological implications. McGhee and von Hippel obtained the equilibrium coverage as a function of the ligand affinity, through the computation of the possible binding sites for the ligand. Here, we complete this theory deriving the kinetic model for the ligand-binding dynamics and the associated equilibrium chemical potential, which turns out to be of the Tonks gas model type.
View Article and Find Full Text PDFLigands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers.
View Article and Find Full Text PDF