Laser-induced forward transfer (LIFT), though usually associated with pulsed lasers, has been recently shown to be feasible for printing liquid inks with continuous wave (CW) lasers. This is remarkable not only because of the advantages that the new approach presents in terms of cost, but also because of the surprising transfer dynamics associated with it. In this work we carry out a study of CW-LIFT aimed at understanding the new transfer dynamics and its correlation with the printing outcomes.
View Article and Find Full Text PDFLaser-induced forward transfer (LIFT) is a direct-writing technique that allows printing inks from a liquid film in a similar way to inkjet printing but with fewer limitations concerning ink viscosity and loading particle size. In this work, we prove that liquid inks can be printed through LIFT by using continuous wave (CW) instead of pulsed lasers, which allows a substantial reduction in the cost of the printing system. Through the fabrication of a functional circuit on both rigid and flexible substrates (plastic and paper), we provide a proof-of-concept that demonstrates the versatility of the technique for printed electronics applications.
View Article and Find Full Text PDF