Publications by authors named "Juan Manuel Sacnun"

Transforming growth factor β (TGF-β) is implicated in both mesothelial-to-mesenchymal transition (MMT) and cellular senescence of human peritoneal mesothelial cells (HPMCs). We previously showed that senescent HPMCs could spontaneously acquire some phenotypic features of MMT, which in young HPMCs were induced by TGF-β. Here, we used electron microscopy, as well as global gene and protein profiling to assess in detail how exposure to TGF-β impacts on young and senescent HPMCs in vitro.

View Article and Find Full Text PDF

Introduction: The peritoneum, pleura, and pericardium are yet understudied multicellular systems where mesothelial cells (MCs) and endothelial cells (ECs) are in close proximity. Crosstalk between these cell types likely plays role in molecular transport, immunological reactions, and metabolic processes in health, disease, and therapeutic intervention.

Areas Covered: In this review, we discuss recent proteomic efforts to characterize the crosstalk between MC and EC.

View Article and Find Full Text PDF

Used hemodialysis membranes (HD-M) are a valuable reservoir of biological information. Proteins bind to HD-M, but whether this process depends on the type of membrane or patient factors or selectively affects specific protein classes has not been adequately elucidated. State-of-the-art proteomics techniques are capable of identifying and quantifying this therapy-specific subproteome to enable the analysis of disease- or membrane-induced pathophysiologies.

View Article and Find Full Text PDF

In vitro studies are essential in pre-clinical research. While choice of cell lines is often driven by handling and cost-effectiveness, in-depth knowledge on specific characteristics is scant. Mesothelial cells, which interact with endothelial cells, are widely used in research, including cancer and drug development, but have not been comprehensively profiled.

View Article and Find Full Text PDF

To replace kidney function, peritoneal dialysis (PD) utilizes hyperosmotic PD fluids with specific physico-chemical properties. Their composition induces progressive damage of the peritoneum, leading to vasculopathies, decline of membrane function, and PD technique failure. Clinically used PD fluids differ in their composition but still remain bioincompatible.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) is one therapeutic option for patients with end-stage kidney disease (ESKD). Molecular profiling of samples from PD patients using different Omics technologies has led to the discovery of dysregulated molecular processes due to PD treatment in recent years. In particular, a number of transcriptomics (TX) datasets are currently available in the public domain in the context of PD.

View Article and Find Full Text PDF

Life-saving renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)-induced mesothelial cytotoxicity.

View Article and Find Full Text PDF

Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated.

View Article and Find Full Text PDF

Seeds germinating underground display a specific developmental programme, termed skotomorphogenesis, to ensure survival of the emerging seedlings until they reach the light. They rapidly elongate the hypocotyl and maintain the cotyledons closed, forming a hook with the hypocotyl in order to protect apical meristematic cells from mechanical damage. Such crucial events for the fate of the seedling are tightly regulated and although some transcriptional regulators and phytohormones are known to be implicated in this regulation, we are still far from a complete understanding of these biological processes.

View Article and Find Full Text PDF