Publications by authors named "Juan Manuel Casas-Solvas"

Per(6-O-tert-butyldimethylsilyl)-α-, β- and γ-cyclodextrin derivatives are well-known as synthetic intermediates that enable the selective mono-, partial, or perfunctionalization of the secondary face of the macrocycles. Although silylation of the primary rim is readily achieved by treatment with tert-butyldimethylsilyl chloride in the presence of pyridine (either alone or mixed with a co-solvent), the reaction typically results in a mixture containing both under- and oversilylated byproducts that are difficult to remove. To address this challenge in preparing a pure product in high yield, we describe an approach that centers on the addition of a controlled excess of silylating agent to avoid the presence of undersilylated species, followed by the removal of oversilylated species by column chromatography elution with carefully designed solvent mixtures.

View Article and Find Full Text PDF

Two β-cyclodextrin derivatives randomly appended on the primary face with both the nitric oxide (NO) photodonor 4-nitro-3-(trifluoromethyl)aniline and a mannose or α(1→2)mannobioside residue are reported to construct targeted NO photoreleasing nanocarriers. 2D ROESY and PGSE NMR suggested supramolecular homodimerization in water by inclusion of the nitroaniline group into the facing macrocycle cavities. Isothermal titration calorimetry on their concanavalin A lectin binding showed an exothermic binding event to the lectin and an endothermic process during the dilution of the conjugates.

View Article and Find Full Text PDF

Background: Metal-organic framework nanoparticles (nanoMOFs) are biodegradable highly porous materials with a remarkable ability to load therapeutic agents with a wide range of physico-chemical properties. Engineering the nanoMOFs surface may provide nanoparticles with higher stability, controlled release, and targeting abilities. Designing postsynthetic, non-covalent self-assembling shells for nanoMOFs is especially appealing due to their simplicity, versatility, absence of toxic byproducts and minimum impact on the original host-guest ability.

View Article and Find Full Text PDF