The introduction of exoskeletons in industry has focused on improving worker safety. Exoskeletons have the objective of decreasing the risk of injury or fatigue when performing physically demanding tasks. Exoskeletons' effect on the muscles is one of the most common focuses of their assessment.
View Article and Find Full Text PDFIntroduction: Parkinson's disease is one of the most prevalent neurodegenerative diseases. In the most advanced stages, PD produces motor dysfunction that impairs basic activities of daily living such as balance, gait, sitting, or standing. Early identification allows healthcare personnel to intervene more effectively in rehabilitation.
View Article and Find Full Text PDFManual material handling tasks in industry cause work-related musculoskeletal disorders. Exoskeletons are being introduced to reduce the risk of musculoskeletal injuries. This study investigated the effect of using a passive lumbar exoskeleton in terms of moderate ergonomic risk.
View Article and Find Full Text PDFIntroduction: People with ulnar, radial or median nerve injuries can present significant impairment of their sensory and motor functions. The prescribed treatment for these conditions often includes electrophysical therapies, whose effectiveness in improving symptoms and function is a source of debate. Therefore, this systematic review aims to provide an integrative overview of the efficacy of these modalities in sensorimotor rehabilitation compared to placebo, manual therapy, or between them.
View Article and Find Full Text PDFOver the years, the industry's interest in using external support devices, such as exoskeletons, is increasing. They are introduced as a new technique for improving the conditions of workers and for reducing the risk of musculoskeletal injuries. An investigation of muscle activity, Jonsson's (Jonsson, 1982) ergonomic acceptance ranges, and shoulder range of motion was conducted with a sample of 12 workers using an upper extremity exoskeleton in an automotive assembly line.
View Article and Find Full Text PDFBackground: A major goal in stroke rehabilitation is the establishment of more effective physical therapy techniques to recover postural stability. Functional Principal Component Analysis provides greater insight into recovery trends. However, when missing values exist, obtaining functional data presents some difficulties.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Functional Principal Component Analysis (FPCA) is an increasingly used methodology for analysis of biomedical data. This methodology aims to obtain Functional Principal Components (FPCs) from Functional Data (time dependent functions). However, in biomedical data, the most common scenario of this analysis is from discrete time values.
View Article and Find Full Text PDFCerebral Palsy (CP) is the most common motor disability in childhood. It is a group of permanent disorders that affect child development causing disorders of movement and posture and activity limitations. The impairment of psychomotor skills of children with Cerebral Palsy is attributed to a permanent alteration occurred in non-progressive brain development of the fetus or nursing infant.
View Article and Find Full Text PDFJ Neuroeng Rehabil
September 2014
Background: This study addressed the problem of evaluating the effectiveness of two protocols of physiotherapy for functional recovery after stroke. In particular, the study explored the use of Functional Principal Component Analysis (FPCA), a multivariate data analysis in order to assess and clarify the process of regaining independence after stroke.
Methods: A randomized double-blind controlled trial was performed.
The new generation of videogame interfaces such as Microsoft's Kinect opens the possibility of implementing exercise programs for physical training, and of evaluating and reducing the risks of elderly people falling. However, applications such as these might require measurements of joint kinematics that are more robust and accurate than the standard output given by the available middleware. This article presents a method based on particle filters for calculating joint angles from the positions of the anatomical points detected by PrimeSense's NITE software.
View Article and Find Full Text PDFBackground: Pathological tremor is the most prevalent movement disorder. Current treatments do not attain a significant tremor reduction in a large proportion of patients, which makes tremor a major cause of loss of quality of life. For instance, according to some estimates, 65% of those suffering from upper limb tremor report serious difficulties during daily living.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
July 2013
Background: Tremor is the most common movement disorder and strongly increases in incidence and prevalence with aging. Although not life threatening, upper-limb tremors hamper the independence of 65% of people suffering from them affected persons, greatly impacting their quality of life. Current treatments include pharmacotherapy and surgery (thalamotomy and deep brain stimulation).
View Article and Find Full Text PDFThis document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity.The methods reviewed comprise classical gait rehabilitation techniques (neurophysiological and motor learning approaches), functional electrical stimulation (FES), robotic devices, and brain-computer interfaces (BCI).
View Article and Find Full Text PDFNowadays human-machine interfaces are evaluated using different methodologies. These methodologies rarely consider the human movements involved in the interaction, and if so, the movements are considered in a simplistic manner. Another often neglected aspect is the relationship between the learning process and the use of the interface.
View Article and Find Full Text PDFThis study aims to present a new concept of a knee hinge based on a crossed four-bar linkage mechanism which has been designed to optimally follow a motion curve representing the knee kinematics in the position at which the knee hinge should be placed. The methodology used to determine the optimal knee hinge is based on the optimization of certain variables of the crossed four-bar mechanism using genetic algorithms in order to follow a certain motion curve, which was determined using a biomechanical model of the knee motion. Two current, commercially available knee hinges have been used to theoretically determine their motion by means of the path performed by their instantaneous helical axis.
View Article and Find Full Text PDF