Publications by authors named "Juan Maldonado Weng"

Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy.

View Article and Find Full Text PDF

Over the last several decades, a number of mouse models have been generated for mechanistic and preclinical therapeutic research on Alzheimer's disease (AD)-like behavioral impairments and pathology. Acceptance or rejection of these models by the scientific community is playing a prominent role in how research findings are viewed and whether grants get funded and manuscripts published. The question of whether models are useful has become an exceptionally contentious issue.

View Article and Find Full Text PDF

Since alleles represent the most impactful genetic risk factors for Alzheimer's disease (AD), their differential mechanism(s) of action are under intense scrutiny. is robustly associated with increased AD risk compared to the neutral and protective . alleles have also been associated with differential inflammation and gastrointestinal recovery after insult in human and murine studies, leading us to hypothesize that alleles impact the gut microbiome.

View Article and Find Full Text PDF

The focus on amyloid plaques and neurofibrillary tangles has yielded no Alzheimer's disease (AD) modifying treatments in the past several decades, despite successful studies in preclinical mouse models. This inconsistency has caused a renewed focus on improving the fidelity and reliability of AD mouse models, with disparate views on how this improvement can be accomplished. However, the interactive effects of the universal biological variables of AD, which include age, APOE genotype, and sex, are often overlooked.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a fatal neurodegenerative disease. APOE4 is the greatest genetic risk factor for AD, increasing risk up to 15-fold compared to the common APOE3. Importantly, female (♀) APOE4 carriers have a greater risk for developing AD and an increased rate of cognitive decline compared to male (♂) APOE4 carriers.

View Article and Find Full Text PDF

Identified in 1993, APOE4 is the greatest genetic risk factor for Alzheimer's disease (AD), increasing risk up to 15-fold compared to the common variant APOE3. Since the mid 1990's, transgenic (Tg) mice have been developed to model AD pathology and progression, primarily via expression of the familial AD (FAD) mutations in the presence of mouse-APOE (m-APOE). APOE4, associated with enhanced amyloid-β (Aβ) accumulation, has rarely been the focus in designing FAD-Tg mouse models.

View Article and Find Full Text PDF