Publications by authors named "Juan Majada"

Background: Predicting the adaptability of forest tree populations under future climates requires a better knowledge of both the adaptive significance and evolvability of measurable key traits. Phenotypic plasticity, standing genetic variation and degree of phenotypic integration shape the actual and future population genetic structure, but empirical estimations in forest tree species are still extremely scarce. We analysed 11 maritime pine populations covering the distribution range of the species (119 families and 8 trees/family, ca.

View Article and Find Full Text PDF

Seed sourcing strategies are the basis for identifying genetic material meeting the requirements of future climatic conditions and social demands. Specifically, local seed sourcing has been extensively promoted, based on the expected adaptation of the populations to local conditions, but there are some limitations for the application. We analyzed Strict-sense local and Wide-sense local (based on climatic similarity) seed sourcing strategies.

View Article and Find Full Text PDF

A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic; that is, they have a genetic architecture determined by numerous loci, each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait.

View Article and Find Full Text PDF

Although the straightening capacity of the stem is key for light capture and mechanical stability in forest trees, little is known about its adaptive implications. Assuming that stem straightening is costly, trade-offs are expected with competing processes such as growth, maintenance, and defence. We established a manipulative experiment in a common garden of Pinus pinaster including provenances typically showing either straight-stemmed or crooked-stemmed phenotypes.

View Article and Find Full Text PDF

Phenols are bioactive substances of great interest because of their involvement in plant physiology, their use in many industrial processes, and their impact on human health. This work aims to summarize the varied approaches to the phenolic analysis of chestnut (bark and wood of trunk and branches, leaves, catkins, burs, and fruit) and to collate the optimal conditions into an easy to follow and execute protocol. Phenolic compounds were extracted by solid-liquid extraction and separated by liquid-liquid extraction.

View Article and Find Full Text PDF

Management of fuel to minimize crown fire hazard is a key challenge in Atlantic forests, particularly for pine species. However, a better understanding of effectiveness of silvicultural treatments, especially forest pruning, for hazard reduction is required. Here we evaluate pruning and thinning as two essential silvicultural treatments for timber pine forests.

View Article and Find Full Text PDF

The use of spores in applications of ectomycorrhizal fungi requires information regarding spore viability and germination, especially in genera such as Rhizopogon with high rates of spore dormancy. The authors developed a protocol to assess spore viability of Rhizopogon roseolus using four vital stains to quantify spore viability and germination and to optimize storage procedures. They showed that propidium iodide is an excellent stain for quantifying nonviable spores.

View Article and Find Full Text PDF
Article Synopsis
  • Plant growth regulators (PGRs) are crucial chemical compounds that influence plant development and physiological processes through mechanisms like cross-talk.
  • Researchers are focused on analyzing a wide range of PGRs to gain accurate insights into plant conditions but face challenges due to existing methods that often overlook certain chemical families.
  • A new, efficient method using UHPLC-MS/MS has been developed to extract and quantify 20 different PGRs from complex matrices, addressing previous limitations in the literature.
View Article and Find Full Text PDF

Natural variation of the metabolome of Pinus pinaster was studied to improve understanding of its role in the adaptation process and phenotypic diversity. The metabolomes of needles and the apical and basal section of buds were analysed in ten provenances of P. pinaster, selected from France, Spain and Morocco, grown in a common garden for 5 years.

View Article and Find Full Text PDF

Heterozygosity-fitness correlations (HFCs) have been used to understand the complex interactions between inbreeding, genetic diversity and evolution. Although frequently reported for decades, evidence for HFCs was often based on underpowered studies or inappropriate methods, and hence their underlying mechanisms are still under debate. Here, we used 6100 genome-wide single nucleotide polymorphisms (SNPs) to test for general and local effect HFCs in maritime pine (Pinus pinaster Ait.

View Article and Find Full Text PDF

Background: Maritime pine (Pinus pinaster Aiton) grows in a range of different climates in the southwestern Mediterranean region and the existence of a variety of latitudinal ecotypes or provenances is well established. In this study, we have conducted a deep analysis of the transcriptome in needles from two P. pinaster provenances, Leiria (Portugal) and Tamrabta (Morocco), which were grown in northern Spain under the same conditions.

View Article and Find Full Text PDF

There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands.

View Article and Find Full Text PDF

Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine.

View Article and Find Full Text PDF

Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance.

View Article and Find Full Text PDF
Article Synopsis
  • Plants activate various responses to drought stress to enhance survival, focusing on morphological, physiological, and proteomic changes.
  • Two Eucalyptus globulus types were studied, revealing that drought-tolerant plants had smaller seeds, a more robust root system, and higher levels of stress-related proteins and abscisic acid (ABA) compared to less tolerant varieties.
  • The research highlights that E. globulus uses multiple strategies at different levels to adapt to drought, including structural changes, hormone regulation, and protein accumulation.
View Article and Find Full Text PDF

The responses of juvenile plants of forest crops to drought stress are a key stage in the survival of forest populations. In this work, a suitable experimental system to study the early drought resistance mechanisms and signaling in a drought-tolerant clone (C14) of Eucalyptus globulus Labill is proposed. This system, using hydroponic culture and an osmotic agent, polyethylene glycol 8000, was demonstrated to induce severe stress in the root area, affecting the responses of the plantlets at the aerial level.

View Article and Find Full Text PDF

Eucalyptus globulus (Labill.) is used for pulp and paper production worldwide. In this report we studied changes in protein expression in one osmotically stressed elite clone widely used in industrial plantations in Spain.

View Article and Find Full Text PDF