Extensive flooding caused by Hurricane María in Puerto Rico (PR) created favorable conditions for indoor growth of filamentous fungi. These conditions represent a public health concern as contamination by environmental fungi is associated with a higher prevalence of inflammatory respiratory conditions. This work compares culturable fungal spore communities present in homes that sustained water damage after Hurricane María to those present in dry, non-flooded homes.
View Article and Find Full Text PDFWastewater-Based Epidemiology (WBE) is widely used to monitor the progression of the current SARS-CoV-2 pandemic at local levels. In this review, we address the different approaches to the steps needed for this surveillance: sampling wastewaters (WWs), concentrating the virus from the samples and quantifying them by qPCR, focusing on the main limitations of the methodologies used. Factors that can influence SARS-CoV-2 monitoring in WWs include: (i) physical parameters as temperature that can hamper the detection in warm seasons and tropical regions, (ii) sampling methodologies and timetables, being composite samples and Moore swabs the less variable and more sensitive approaches, (iii) virus concentration methodologies that need to be feasible and practicable in simpler laboratories and (iv) detection methodologies that should tend to use faster and cost-effective procedures.
View Article and Find Full Text PDFThe epicardial administration of therapeutics via the pericardial sac offers an attractive route, since it is minimally invasive and carries no risks of coronary embolization. The aim of this study was to assess viability, safety and effectiveness of cardiosphere-derived cells (CDCs), their extracellular vesicles (EVs) or placebo administered via a mini-thoracotomy 72 h after experimental infarction in swine. The epicardial administration was completed successfully in all cases in a surgery time (knife-to-skin) below 30 min.
View Article and Find Full Text PDFSci Total Environ
December 2021
Monitoring the genetic signal of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through RNA titers in wastewater has emerged as a promising strategy for tracking community-scale prevalence of coronavirus disease 2019 (COVID-19). Although many studies of SARS-CoV-2 in wastewater have been conducted around the world, a uniform procedure for concentrating the virus in wastewater is lacking. The goal of this study was to comprehensively evaluate how different methods for concentrating the suspended solids in wastewater affect the associated SARS-CoV-2 RNA signal and the time required for processing samples for wastewater-based epidemiology efforts.
View Article and Find Full Text PDFBackground: As mobile technologies become ever more sensor-rich, portable, and ubiquitous, data captured by smart devices are lending rich insights into users' daily lives with unprecedented comprehensiveness and ecological validity. A number of human-subject studies have been conducted to examine the use of mobile sensing to uncover individual behavioral patterns and health outcomes, yet minimal attention has been placed on measuring living environments together with other human-centered sensing data. Moreover, the participant sample size in most existing studies falls well below a few hundred, leaving questions open about the reliability of findings on the relations between mobile sensing signals and human outcomes.
View Article and Find Full Text PDFAlthough many COVID-19 patients isolate and recover at home, the dispersal of SARS-CoV-2 onto surfaces and dust within the home environment remains poorly understood. To investigate the distribution and persistence of SARS-CoV-2 in a home with COVID-19 positive occupants, samples were collected from a household with two confirmed COVID-19 cases (one adult and one child). Home surface swab and dust samples were collected two months after symptom onset (and one month after symptom resolution) in the household.
View Article and Find Full Text PDFConventional diffused aeration systems (such as fine-bubble diffusers) exhibit a poor oxygen transfer in wastewater treatment plants (WWTPs), particularly when operating at sludge concentrations higher than 15 g L. The supersaturated dissolved oxygen (SDOX) system has been proposed as an alternative for supplying dissolved oxygen (DO) at high mixed liquor suspended solids (MLSS) concentrations. The advantages introduced by such technology include the possibility of operating WWTPs at much higher than usual MLSS concentrations, increasing the treatment capacity of WWTPs.
View Article and Find Full Text PDFWhile harvested rainwater can serve as an alternative water supply, microbial contaminants within the collection system can negatively affect water quality. Here, we investigated the impact of roofing material on the microbial quality of rainwater freshly harvested from pilot-scale roofs (concrete tile, cool, green, Galvalume metal, and asphalt fiberglass shingle). The microbial quality of freshly harvested rainwater from six rain events over two years was analyzed by high-throughput sequencing and culture-dependent and -independent techniques.
View Article and Find Full Text PDFBackground: The microbiome of the built environment has important implications for human health and wellbeing; however, bidirectional exchange of microbes between occupants and surfaces can be confounded by lifestyle, architecture, and external environmental exposures. Here, we present a longitudinal study of United States Air Force Academy cadets (n = 34), which have substantial homogeneity in lifestyle, diet, and age, all factors that influence the human microbiome. We characterized bacterial communities associated with (1) skin and gut samples from roommate pairs, (2) four built environment sample locations inside the pairs' dormitory rooms, (3) four built environment sample locations within shared spaces in the dormitory, and (4) room-matched outdoor samples from the window ledge of their rooms.
View Article and Find Full Text PDFAnalysis of the dust from heating, ventilation, and air conditioning (HVAC) filters is a promising long-term sampling method to characterize airborne particle-bound contaminants. This filter forensics (FF) approach provides valuable insights about differences between buildings, but does not allow for an estimation of indoor concentrations. In this investigation, FF is extended to quantitative filter forensics (QFF) by using measurements of the volume of air that passes through the filter and the filter efficiency, to assess the integrated average airborne concentrations of total fungal and bacterial DNA, 36 fungal species, endotoxins, phthalates, and organophosphate esters (OPEs) based on dust extracted from HVAC filters.
View Article and Find Full Text PDFPreclinical studies in cardiovascular medicine are necessary to translate basic research to the clinic. The porcine model has been widely used to understand the biological mechanisms involved in cardiovascular disorders for which purpose different closed-chest models have been developed in the last years to mimic the pathophysiological events seen in human myocardial infarction. In this work, we studied hematological, biochemical and immunological parameters, as well as Magnetic resonance derived cardiac function measurements obtained from a swine myocardial infarction model.
View Article and Find Full Text PDFPhthalates and organophosphates are ubiquitous indoor semi-volatile organic contaminants (SVOCs) that have been widely used as plasticizers and flame retardants in consumer products. Although many studies have assessed their levels in house dust, only a few used dust samples captured by filters of building heating, ventilation, and air conditioning (HVAC) systems. HVAC filters collect particles from large volumes of air over a long period of time (potentially known) and thus provide a spatially and temporally integrated concentration.
View Article and Find Full Text PDFBackground: Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. High-throughput DNA sequencing of dust samples provides valuable insights into the microbiome present in human-occupied spaces. However, the effect that different sampling methods have on the microbial community recovered from dust samples is not well understood across sample types.
View Article and Find Full Text PDFMinim Invasive Ther Allied Technol
October 2017
Background: Surgical environments require special aseptic conditions for direct interaction with the preoperative images. We aim to test the feasibility of using a set of gesture control sensors combined with voice control to interact in a sterile manner with preoperative information and an integrated operating room (OR) during laparoscopic surgery.
Material And Methods: Two hepatectomies and two partial nephrectomies were performed by three experienced surgeons in a porcine model.
Chloramines are the second most used secondary disinfectant by United States water utilities. However, chloramination may promote nitrifying bacteria. Recently, monochloramine cometabolism by the pure culture ammonia-oxidizing bacteria, Nitrosomonas europaea, was shown to increase monochloramine demand.
View Article and Find Full Text PDFIntroduction: The intrapericardial delivery has been defined as an efficient method for pharmacological agent delivery. Here we hypothesize that intrapericardial administration of cardiosphere-derived cells (CDCs) may have an immunomodulatory effect providing an optimal microenvironment for promoting cardiac repair. To our knowledge, this is the first report studying the effects of CDCs for myocardial repair using the intrapericardial delivery route.
View Article and Find Full Text PDFBackground: The optimal timing of cardiac stem cells administration is still unclear. We assessed the safety of same-day and delayed (one week) delivery and the possible influence of the timing on the therapeutic outcomes of allogeneic porcine cardiac stem cells administration after acute myocardial infarction in a closed-chest ischemia-reperfusion model.
Methods: Female swine surviving 90 min occlusion of the mid left anterior descending coronary artery received an intracoronary injection of 25x10(6) porcine cardiac stem cells either two hours (n = 5, D0) or 7 days (n = 6, D7) after reperfusion.
The appropriate administration route for cardiovascular cell therapy is essential to ensure the viability, proliferative potential, homing capacity and implantation of transferred cells. At the present, the intrapericardial administration of pharmacological agents is considered an efficient method for the treatment of cardiovascular diseases. However, only a few reports have addressed the question whether the intrapericardial delivery of Mesenchymal Stem Cells (MSCs) could be an optimal administration route.
View Article and Find Full Text PDFOur aim was to develop an easy-to-induce, reproducible, and low mortality clinically relevant closed-chest model of chronic myocardial infarction in swine using intracoronary ethanol and characterize its evolution using MRI and pathology. We injected 3-4 mL of 100% ethanol into the mid-LAD of anesthetized swine. Heart function and infarct size were assessed serially using MRI.
View Article and Find Full Text PDFObjective: Streptococcus oralis is an early coloniser of the oral cavity that contributes to dental plaque formation. Many different genotypes can coexist in the same individual and cause opportunistic infections such as bacterial endocarditis. However, little is known about virulence factors involved in those processes.
View Article and Find Full Text PDFThis report summarizes a meeting held in Boulder, CO USA (19-20 October 2012) on fungal community analyses using ultra-high-throughput sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (rRNA) genes. The meeting was organized as a two-day workshop, with the primary goal of supporting collaboration among researchers for improving fungal ITS sequence resources and developing recommendations for standard ITS primers for the research community.
View Article and Find Full Text PDFThe aim of the study was to investigate biofilm formation in Gram negative bacteria and to quantify biofilm production applying a new developed technique that made possible to compare results about biofilm formation within the different Gram negative bacteria species. A total of 153 Gram negative strains corresponding to 12 different bacterium species were studied applying a variation of the optic density measurement technique reported by Stepanovic et al. Data obtained with optic density analysis allow to classify microorganisms in strong biofilm developers, moderate biofilm developers, weak biofilm developers and no biofilm developers.
View Article and Find Full Text PDFChloramine is widely used in United States drinking water systems as a secondary disinfectant, which may promote the growth of nitrifying bacteria because ammonia is present. At the onset of nitrification, both nitrifying bacteria and their products exert a monochloramine demand, decreasing the residual disinfectant concentration in water distribution systems. This work investigated another potentially significant mechanism for residual disinfectant loss: monochloramine cometabolism by ammonia-oxidizing bacteria (AOB).
View Article and Find Full Text PDF