Nanomaterials (Basel)
January 2020
The development of new catalytic nanomaterials following sustainability criteria both in their composition and in their synthesis process is a topic of great current interest. The purpose of this work was to investigate the preparation of nanocatalysts derived from the zirconium metal-organic framework UiO-66 obtained under friendly conditions and supporting dispersed species of non-noble transition elements such as Cu, Co, and Fe, incorporated through a simple incipient wetness impregnation technique. The physicochemical properties of the synthesized solids were studied through several characterization techniques and then they were investigated in reactions of relevance for environmental pollution control, such as the oxidation of carbon monoxide in air and in hydrogen-rich streams (COProx).
View Article and Find Full Text PDFThe physicochemical modification of Metal-Organic Frameworks (MOFs) is a current challenge in the search to improve their performance in different technological applications. In this work we analyze the post-synthetic modification of ZIF-8 crystals and films through a simple and clean treatment that involves the exposure to a UV lamp under environmental conditions. It is demonstrated that a short treatment alters the MOF structure and chemistry, providing a modified ZIF-8 due to partial disconnections of its structure which increase the amount of terminal surface species such as Zn-OH and -C=N-H, but without compromising the overall MOF structure, specific surface area or thermal stability.
View Article and Find Full Text PDFThe effect of the solvent on the synthesis process and on the nanocrystal characteristics of the zeolitic imidazolate framework-8 (ZIF-8) was investigated. A synthesis protocol at room temperature employing a series of aliphatic alcohols, water, dimethylformamide and acetone was employed. The results show that the solvent modifies the evolution of the reaction, altering the crystallization rates and nanocrystal sizes.
View Article and Find Full Text PDFMixed-matrix membranes (MMMs) were prepared by combinations of two different kinds of porous fillers [metal-organic frameworks (MOFs) HKUST-1 and ZIF-8, and zeolite silicalite-1] and polysulfone. In the search for filler synergy, the MMMs were applied to the separation of CO(2)/N(2), CO(2)/CH(4), O(2)/N(2), and H(2)/CH(4) mixtures and we found important selectivity improvements with the HKUST-1-silicalite-1 system (CO(2)/CH(4) and CO(2)/N(2) separation factors of 22.4 and 38.
View Article and Find Full Text PDF