In this work, we experimentally analyzed and demonstrated the performance of an in-line Mach-Zehnder interferometer in the visible region, with an LED light source. The different waist diameter taper and asymmetric core-offset interferometers proposed used a single-mode fiber (SMF). The visibility achieved was V = 0.
View Article and Find Full Text PDFThis research presents an experimental study focused on measuring temperature at the tool flank during the up-milling process at high cutting speed. The proposed system deals with emissivity compensation through a two-photodetector system and during calibration. A ratio pyrometer composed of two photodetectors and a multimode fiber-optic coupler is employed to capture the radiation emitted by the cutting insert.
View Article and Find Full Text PDFA moisture sensor based on a composite resonator is used to measure different honey samples, which include imitation honey. The sensor changes its frequency response in accordance with the dielectric permittivity that it detects in the measured samples. Although reflectometry sensors have been used to measure the percentage of moisture in honey for almost a century, counterfeiters have achieved that their apocryphal product is capable of deceiving these kinds of sensors.
View Article and Find Full Text PDFIn this paper, a gas sensing system based on a conventional absorption technique using a single-mode-fiber supercontinuum source (SMF-SC) is presented. The SC source was implemented by channeling pulses from a microchip laser into a one kilometer long single-mode fiber (SMF), obtaining a flat high-spectrum with a bandwidth of up to 350 nm in the region from 1350 to 1700 nm, and high stability in power and wavelength. The supercontinuum radiation was used for simultaneously sensing water vapor and acetylene gas in the regions from 1350 to 1420 nm and 1510 to 1540 nm, respectively.
View Article and Find Full Text PDFThe present work experimentally demonstrates a multimode fiber optic sensing setup for total fat detection in raw milk samples. The optical fiber arrangement incorporates a low-coherence Fabry-Perot cavity operating in dual response. The system provides a phase modulation for a total fat range from 0.
View Article and Find Full Text PDFManual measurements of foot anthropometry can lead to errors since this task involves the experience of the specialist who performs them, resulting in different subjective measures from the same footprint. Moreover, some of the diagnoses that are given to classify a footprint deformity are based on a qualitative interpretation by the physician; there is no quantitative interpretation of the footprint. The importance of providing a correct and accurate diagnosis lies in the need to ensure that an appropriate treatment is provided for the improvement of the patient without risking his or her health.
View Article and Find Full Text PDFA compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum.
View Article and Find Full Text PDFThis paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function.
View Article and Find Full Text PDFIn this paper, an all-fiber Mach-Zehnder interferometer (MZI) based on a non-zero dispersion-shifted fiber (NZ-DSF) is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs). Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers.
View Article and Find Full Text PDFIn this work an Intrinsic Fabry-Perot Interferometer (IFPI) based on an air-microcavity is presented. Here the air microcavity, with silica walls, is formed at a segment of a hollow core photonic crystal fiber (HCPCF), which is fusion spliced with a single mode fiber (SMF). Moreover, the spectral response of the IFPI is experimentally characterized and some results are provided.
View Article and Find Full Text PDF