Publications by authors named "Juan M Sepulveda"

Article Synopsis
  • The review discusses the significant role of myeloid cells in the inflammatory processes of central nervous system (CNS) diseases, specifically gliomas (brain tumors) and neurodegenerative disorders like Alzheimer's and Parkinson's disease.
  • It highlights the similarities in chronic inflammation and immune dysfunction that these diseases share, despite their different symptoms and treatment challenges.
  • Advances in research, particularly single-cell technologies, are explored to uncover the diverse functions of myeloid cells and suggest novel therapeutic targets for improving treatment outcomes in these conditions.
View Article and Find Full Text PDF

Background: Standard treatment for patients with newly diagnosed glioblastoma includes surgery, radiotherapy (RT), and temozolomide (TMZ) chemotherapy (TMZ/RT→TMZ). The proteasome has long been considered a promising therapeutic target because of its role as a central biological hub in tumor cells. Marizomib is a novel pan-proteasome inhibitor that crosses the blood-brain barrier.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a highly malignant brain tumor that affects men more often than women. In addition, the former shows a poorer survival prognosis. To date, the reason for this sex-specific aggressiveness remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are aggressive brain tumors, and vorasidenib is a promising oral treatment that targets these mutations and showed preliminary effectiveness.
  • A randomized phase 3 trial involved 331 patients with untreated residual or recurrent gliomas, comparing vorasidenib to a placebo over 28-day cycles, focusing on progression-free survival as the main outcome.
  • Results indicated that patients taking vorasidenib had significantly longer progression-free survival (27.7 months) compared to those on placebo (11.1 months) and experienced better outcomes before needing further treatment, although adverse effects were more common in the vorasidenib group.
View Article and Find Full Text PDF

Bromodomain and extraterminal proteins (BET) play key roles in regulation of gene expression, and may play a role in cancer-cell proliferation, survival, and oncogenic progression. CC-90010-ST-001 (NCT03220347) is an open-label phase I study of trotabresib, an oral BET inhibitor, in heavily pretreated patients with advanced solid tumors and relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Primary endpoints were the safety, tolerability, maximum tolerated dose, and RP2D of trotabresib.

View Article and Find Full Text PDF

Background: Standard-of-care treatment for newly diagnosed glioblastoma (ndGBM), consisting of surgery followed by radiotherapy (RT) and temozolomide (TMZ), has improved outcomes compared with RT alone; however, prognosis remains poor. Trotabresib, a novel bromodomain and extraterminal inhibitor, has demonstrated antitumor activity in patients with high-grade gliomas.

Methods: In this phase Ib, dose-escalation study (NCT04324840), we investigated trotabresib 15, 30, and 45 mg combined with TMZ in the adjuvant setting and trotabresib 15 and 30 mg combined with TMZ+RT in the concomitant setting in patients with ndGBM.

View Article and Find Full Text PDF

Background: Addition of temozolomide (TMZ) to radiotherapy (RT) improves overall survival (OS) in patients with glioblastoma (GBM), but previous studies suggest that patients with tumors harboring an unmethylated MGMT promoter derive minimal benefit. The aim of this open-label, phase III CheckMate 498 study was to evaluate the efficacy of nivolumab (NIVO) + RT compared with TMZ + RT in newly diagnosed GBM with unmethylated MGMT promoter.

Methods: Patients were randomized 1:1 to standard RT (60 Gy) + NIVO (240 mg every 2 weeks for eight cycles, then 480 mg every 4 weeks) or RT + TMZ (75 mg/m2 daily during RT and 150-200 mg/m2/day 5/28 days during maintenance).

View Article and Find Full Text PDF

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ.

View Article and Find Full Text PDF

We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery.

View Article and Find Full Text PDF

Background: No systemic treatment has been established for meningioma progressing after local therapies.

Methods: This randomized, multicenter, open-label, phase II study included adult patients with recurrent WHO grade 2 or 3 meningioma. Patients were 2:1 randomly assigned to intravenous trabectedin (1.

View Article and Find Full Text PDF

Background: EGFR is among the genes most frequently altered in glioblastoma, with exons 2-7 deletions (EGFRvIII) being among its most common genomic mutations. There are conflicting reports about its prognostic role and it remains unclear whether and how it differs in signaling compared with wildtype EGFR.

Methods: To better understand the oncogenic role of EGFRvIII, we leveraged 4 large datasets into 1 large glioblastoma transcriptome dataset (n = 741) alongside 81 whole-genome samples from 2 datasets.

View Article and Find Full Text PDF

Background: Giant cell glioblastoma (gcGBM) is a rare morphological variant of IDH-wildtype (IDHwt) GBM that occurs in young adults and have a slightly better prognosis than "classic" IDHwt GBM.

Methods: We studied 36 GBMs, 14 with a histopathological diagnosis of gcGBM and 22 with a giant cell component. We analyzed the genetic profile of the most frequently mutated genes in gliomas and assessed the tumor mutation load (TML) by gene-targeted next-generation sequencing.

View Article and Find Full Text PDF

Background: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment.

Methods: Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples.

View Article and Find Full Text PDF

Importance: Clinical outcomes for glioblastoma remain poor. Treatment with immune checkpoint blockade has shown benefits in many cancer types. To our knowledge, data from a randomized phase 3 clinical trial evaluating a programmed death-1 (PD-1) inhibitor therapy for glioblastoma have not been reported.

View Article and Find Full Text PDF

Background: Depatuxizumab mafodotin (Depatux-M) is a tumor-specific antibody-drug conjugate consisting of an antibody (ABT-806) directed against activated epidermal growth factor receptor (EGFR) and the toxin monomethylauristatin-F. We investigated Depatux-M in combination with temozolomide or as a single agent in a randomized controlled phase II trial in recurrent EGFR amplified glioblastoma.

Methods: Eligible were patients with centrally confirmed EGFR amplified glioblastoma at first recurrence after chemo-irradiation with temozolomide.

View Article and Find Full Text PDF

Pazopanib is an oral angiogenesis tyrosine kinase inhibitor (TKI) recommended in metastatic renal cell carcinoma (mRCC) for treatment-naïve patients or those experiencing cytokine failure. We conducted a phase 2, open-label, single-arm study in ten Spanish centres among mRCC patients whose disease progressed on first-line TKI. Patients received pazopanib until disease progression, death, or unacceptable toxicity.

View Article and Find Full Text PDF

Background: Precision medicine trials targeting the epidermal growth factor receptor (EGFR) in glioblastoma patients require selection for EGFR-amplified tumors. However, there is currently no gold standard in determining the amplification status of EGFR or variant III (EGFRvIII) expression. Here, we aimed to determine which technique and which cutoffs are suitable to determine EGFR amplification status.

View Article and Find Full Text PDF

Standard treatment of newly diagnosed glioblastoma (GB) is surgery with radiotherapy and temozolomide, but tumors will recur with a median overall survival of only 15 months. It seems imperative to explore new possibilities of treatment based on targetable alterations known to be present in GB. Among others, Epidermal Growth Factor Receptor or EGFR (HER1) mutations or amplifications are the most prevalent alterations in GB.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor due, at least in part, to its poor response to current anticancer treatments. These features could be explained, at least partially, by the presence within the tumor mass of a small population of cells termed Glioma Initiating Cells (GICs) that has been proposed to be responsible for the relapses occurring in this disease. Thus, the development of novel therapeutic approaches (and specifically those targeting the population of GICs) is urgently needed to improve the survival of the patients suffering this devastating disease.

View Article and Find Full Text PDF

Background And Purpose: Our objectives were: (1) compare dynamic susceptibility-weighted (DSC) and dynamic contrast-enhanced (DCE) permeability parameters, (2) evaluate diagnostic accuracy of DSC and DCE discriminating high- and low-grade tumors, (3) analyze relationship of permeability parameters with overall (OS) and progression-free survival (PFS) and (4) assess differences in high-grade tumors classified according to molecular biomarkers.

Materials And Methods: 49 patients with histologically proved diffuse gliomas underwent DSC and DCE imaging. Parametric maps of cerebral blood volume (CBV), CBV-leakage corrected, volume transfer coefficient (Ktrans), fractional volume of the extravascular extracellular space (EES) (Ve), fractional blood plasma volume (Vp) and rate constant between EES and blood plasma (Kep) were calculated.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most frequent and aggressive form of brain cancer. These features are explained at least in part by the high resistance exhibited by these tumors to current anticancer therapies. Thus, the development of novel therapeutic approaches is urgently needed to improve the survival of the patients suffering this devastating disease.

View Article and Find Full Text PDF

Introduction: Although increasing numbers of therapies with proven survival benefits have become available for metastatic castration-resistant prostate cancer (mCRPC), including radium-223, there is still a need for reliable biomarkers that provide information about clinically meaningful outcomes and treatment responses.

Materials And Methods: This study was a translational study that was conducted prospectively by the Spanish Oncology Genito-Urinary Group and included 45 patients with histologically confirmed mCRPC who were treated with radium-223. The primary response outcome was defined by a decline in circulating tumor cells (CTCs) of > 50% from baseline or a CTC count of ≤ 5 cells/7.

View Article and Find Full Text PDF