"Exercise is medicine" emphasizes personalized prescriptions for better efficacy. Current guidelines need more support for personalized prescriptions, posing scientific challenges. Facing those challenges, we gathered data from established guidelines, databases, and articles to develop the Exercise Medicine Ontology (EXMO), intending to offer comprehensive support for personalized exercise prescriptions.
View Article and Find Full Text PDFAmong external stimuli-responsive therapy approaches, those using near infrared (NIR) light irradiation have attracted significant attention to treat bone-related diseases and bone tissue regeneration. Therefore, the development of metallic biomaterials sensitive to NIR stimuli is an important area of research in orthopaedics. In this study, we have generated prism-shaped silver nanoparticles (p-AgNPs) in a biomorphic nano-holed TiO coating on a Ti6Al4V alloy (a-Ti6Al4V).
View Article and Find Full Text PDFThis research addresses the crucial necessity for a deeper understanding of the binding interactions between surfactants and proteins, with a specific focus on ovalbumin. Considering ovalbumin's role in diverse biochemical processes, it remains a subject of significant interest for drug discovery and design. To fill existing knowledge gaps, we investigated the binding interaction between dicloxacillin and cetyltrimethylammonium bromide (CTAB) on ovalbumin, employing a comprehensive approach that combines computational modeling with experimental validations.
View Article and Find Full Text PDFLeishmaniasis is a neglected tropical illness with a wide variety of clinical signs ranging from visceral to cutaneous symptoms, resulting in millions of new cases and thousands of fatalities reported annually. This article provides a bibliometric analysis of the main authors' contributions, institutions, and nations in terms of productivity, citations, and bibliographic linkages to the application of nanoparticles (NPs) for the treatment of leishmania. The study is based on a sample of 524 Scopus documents from 1991 to 2022.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoO (nano-HA/MoO) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoO electrodes was determined in the presence of pathogenic organisms: and .
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play.
View Article and Find Full Text PDFThe centrifugal electrostatic blowing process proposed in this paper solves the difficult continuous and stable deposition problem in the traditional centrifugal electrostatic spinning process. By establishing a flight deposition model of the centrifugal electrostatic spraying process, CFD is used to simulate and analyze the electrohydrodynamic effect of centrifugal jets, and the driving mechanism is explored. Subsequently, MATLAB is used to obtain the optimal solution conditions, and finally, the establishment of a two-dimensional flight trajectory model is completed and experimentally verified.
View Article and Find Full Text PDFThe rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks.
View Article and Find Full Text PDFCurr Top Med Chem
April 2023
Background: Herein, molecular docking approaches and DFT ab initio simulations were combined for the first time, to study the key interactions of cyclodextrins (CDs: α-CD, β-CD, and γ-CD) family with potential pharmacological relevance and the multidrug resistance P-gp protein toward efficient drug-delivery applications. The treatment of neurological disorders and cancer therapy where the multiple drug-resistance phenomenon mediated by the P-gp protein constitutes the fundamental cause of unsuccessful therapies.
Objectives: To understand more about the CD docking mechanism and the P-gp.
ACS Appl Mater Interfaces
February 2022
Near-infrared (NIR) radiation plays an important role in guided external stimulus therapies; its application in bone-related treatments is becoming more and more frequent. Therefore, metallic biomaterials that exhibit properties activated by NIR are promising for further orthopedic procedures. In this work, we present an adapted electroforming approach to attain a biomorphic nano-holed TiO coating on Ti6Al4V alloy.
View Article and Find Full Text PDFGold nanoparticles (GNPs) are an attractive nanomaterial for potential applications in therapy and diagnostics due to their capability to direct toward specific sites in the organism. However, when exposed to plasma, GNPs can interact with different biomolecules that form a dynamic nano-bio interface called a "protein corona" (PC). Remarkably, the PC could affect multiple biological processes, such as cell targeting and uptake, cytotoxicity, and nanoparticle (NP) clearance.
View Article and Find Full Text PDFIn this work we present a computational analysis together with experimental studies, focusing on the interaction between a benzothiazole (BTS) and lysozyme. Results obtained from isothermal titration calorimetry, UV-vis, and fluorescence were contrasted and complemented with molecular docking and machine learning techniques. The free energy values obtained both experimentally and theoretically showed excellent similarity.
View Article and Find Full Text PDFCurr Top Med Chem
September 2021
Due to an oversight of the publisher, Page no 2310 was missing in the published paper and page no 2311 repeated twice in the article entitled "Computational Modeling of Environmental Co-exposure on Oil-Derived Hydrocarbon Overload by Using Substrate-Specific Transport Protein (TodX) with Graphene Nanostructures, 2020, 20(25), 2308-2325 [1]. The page no 2310 is added in the article and the repetition of page no 2311 is corrected. The original article can be found online at https://doi.
View Article and Find Full Text PDFThe development of new materials based on hydroxyapatite has undergone a great evolution in recent decades due to technological advances and development of computational techniques. The focus of this review is the various attempts to improve new hydroxyapatite-based materials. First, we comment on the most used processing routes, highlighting their advantages and disadvantages.
View Article and Find Full Text PDFSingle-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we have developed a new approach based on the combination of experimental and computational study, since the use of only one or few techniques may not fully describe the phenomena. To this end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with docking, elastic network models, fractal surface analysis, and Nano-QSTR models.
View Article and Find Full Text PDFBiotechnol Appl Biochem
April 2022
In this work, one of the most prevalent polypharmacology drug-drug interaction events that occurs between two widely used beta-blocker drugs-i.e., acebutolol and propranolol-with the most abundant blood plasma fibrinogen protein was evaluated.
View Article and Find Full Text PDFCurr Top Med Chem
June 2021
Background: Bioremediation is a biotechnology field that uses living organisms to remove contaminants from soil and water; therefore, they could be used to treat oil spills from the environment.
Methods: Herein, we present a new mechanistic approach combining Molecular Docking Simulation and Density Functional Theory to modeling the bioremediation-based nanointeractions of a heterogeneous mixture of oil-derived hydrocarbons by using pristine and oxidized graphene nanostructures and the substrate-specific transport protein (TodX) from Pseudomonas putida.
Results: The theoretical evidences pointing that the binding interactions are mainly based on noncovalent bonds characteristic of physical adsorption mechanism mimicking the "Trojan-horse effect".
Three-dimensional conformational crystallographic binding-modes are of paramount importance to understand the docking mechanism of protein-ligand interactions and to identify potential "leading drugs" conformers towards rational drugs-design. Herein, we present an integrated computational-experimental study tackling the problem of multiple binding modes among the ligand 3-(2-Benzothiazolylthio)-propane sulfonic acid (BTS) and the fibrinogen receptor (E-region). Based on molecular docking simulations, we found that the free energy of binding values for nine of different BTS-docking complexes (i.
View Article and Find Full Text PDFHydrogels exhibit excellent properties that enable them as nanostructured scaffolds for soft tissue engineering. However, single-component hydrogels have significant limitations due to the low versatility of the single component. To achieve this goal, we have designed and characterized different multi-component hydrogels composed of gelatin, alginate, hydroxyapatite, and a protein (BSA and fibrinogen).
View Article and Find Full Text PDFNowadays, the repair of large-size bone defects represents a huge medical challenge. A line of attack is the construction of advanced biomaterials having multifunctional properties. In this work, we show the creation of biocompatible MoOx-hydroxyapatite nanoparticles (nano-HA/MoOx) that simultaneously exhibit self-activated fluorescence and antibiotic skills.
View Article and Find Full Text PDFWe present a computational analysis coupled with experimental studies, focusing on the binding-interaction between beta-adrenoreceptor blocking agents (acebutolol and propranolol) with fibrinogen protein (E-region). Herein, computational modeling on structural validation and flexibility properties of fibrinogen E-region showed that the E-region interacting residues, which form the funnel-shaped hydrophobic cavity for ligand-binding, can be efficiently modeled. The obtained free energy of binding (FEB) values for the docking complexes, namely acebutolol/fibrinogen E-region and propranolol/fibrinogen E-region, were very close and amounted to - 6.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2019
Bioceramic nanoparticles have many potential applications within the biomedical device industry. However, these applications demand a precise control of their sizes, shapes and morphology which play a main role in most properties. In this work, we report a new route for the synthesis of hydroxyapatite nanoparticles using a microfluidic device.
View Article and Find Full Text PDFCurr Top Med Chem
November 2018
Biomacromolecules structures and their interaction between different systems have been extensively studied in the last years. Nevertheless, in the medicinal context, it has not been studied deeply. For this reason, the interest to investigate the behavior of different biomacromolecules such us proteins, organelles, phospholipids, etc.
View Article and Find Full Text PDF