Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of pathogenic CD138+ plasma cells (PPCs) in bone marrow (BM). Recent years have seen a significant increase in the treatment options for MM; however, most patients who achieve complete the response ultimately relapse. The earlier detection of tumor-related clonal DNA would thus be very beneficial for patients with MM and would enable timely therapeutic interventions to improve outcomes.
View Article and Find Full Text PDFIn the present study, we screened 84 Follicular Lymphoma patients for somatic mutations suitable as liquid biopsy MRD biomarkers using a targeted next-generation sequencing (NGS) panel. We found trackable mutations in 95% of the lymph node samples and 80% of the liquid biopsy baseline samples. Then, we used an ultra-deep sequencing approach with 2 · 10 sensitivity (LiqBio-MRD) to track those mutations on 151 follow-up liquid biopsy samples from 54 treated patients.
View Article and Find Full Text PDFNext-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements.
View Article and Find Full Text PDFAm J Surg Pathol
November 2022
The relationship between the ductal and lobular components of invasive ductolobular carcinomas (IDLC) has not been fully elucidated. In this study, the molecular alterations of both components were analyzed in a series of 20 IDLC that were selected, not only by morphologic criteria, but also by the loss of E-cadherin expression in the lobular component. We found that 80% of tumors shared alterations of driver genes in both components, being PIK3CA the most common alteration.
View Article and Find Full Text PDFBackground: Immunohistochemistry (IHQ) is commonly used for the detection of mismatch repair proteins deficiency (MMRD). One very infrequent abnormal pattern of MMR protein expression is the loss of PMS2 and MSH6, with intact expression of MLH1 and MSH2.
Case Presentation: We review the frequency of this MMRD IHC pattern among 108 colorectal (CRCs) and 35 endometrial cancers in our files with loss of expression of at least one protein, and present two CRCs showing loss of PMS2 and MSH6 protein expression (1.
Endometrioid ovarian carcinoma (EOC) has clinical and biological differences compared with other histologic types of ovarian carcinomas, but it shares morphologic and molecular features with endometrioid endometrial carcinoma. To analyze the molecular heterogeneity of EOC according to the new molecular classification of endometrial cancer and to evaluate the prognostic significance of this molecular classification, we have analyzed 166 early-stage EOC by immunohistochemistry for mismatch repair proteins and p53 expression, and by Sanger sequencing for the exonuclease domain of polymerase epsilon (POLE EDM). In addition, we have carried out next-generation sequencing analysis of tumors with POLE EDM mutations to confirm the ultramutated profile.
View Article and Find Full Text PDFMismatch repair deficiency (MMRD) is involved in the initiation of both hereditary and sporadic tumors. MMRD has been extensively studied in colorectal cancer and endometrial cancer, but not so in other tumors, such as ovarian carcinoma. We have determined the expression of mismatch repair proteins in a large cohort of 502 early-stage epithelial ovarian carcinoma entailing all the 5 main subtypes: high-grade serous carcinoma, endometrioid ovarian carcinoma (EOC), clear cell carcinoma (CCC), mucinous carcinoma, and low-grade serous carcinoma.
View Article and Find Full Text PDFThe frequency and prognostic significance of the histologic type in early-stage ovarian cancer (OC) is not as well established as in advanced stages. In addition, histologic typing based only on morphologic features may be difficult, especially in high-grade tumors. In this study, we have analyzed a prospective cohort of 502 early-stage OCs to investigate their frequency, immunohistochemical characteristics, and survival of the 5 main histologic types.
View Article and Find Full Text PDFEndometrial carcinosarcoma (ECS) represents one of the most extreme examples of tumor heterogeneity among human cancers. ECS is a clinically aggressive, high-grade, metaplastic carcinoma. At the morphological level, intratumor heterogeneity in ECS is due to an admixture of epithelial (carcinoma) and mesenchymal (sarcoma) components that can include heterologous tissues, such as skeletal muscle, cartilage, or bone.
View Article and Find Full Text PDFCharacterisation of molecular alterations of pleomorphic lobular carcinoma (PLC), an aggressive subtype of invasive lobular carcinoma (ILC), have not been yet completely accomplished. To investigate the molecular alterations of invasive lobular carcinoma with pleomorphic features, a total of 39 tumour samples (in situ and invasive lesions and lymph node metastases) from 27 patients with nuclear grade 3 invasive lobular carcinomas were subjected to morphological, immunohistochemical and massive parallel sequencing analyses. Our observations indicated that invasive lobular carcinomas with pleomorphic features were morphologically and molecularly heterogeneous.
View Article and Find Full Text PDFBackground: Breast carcinoma with osteoclast-like giant cells (OGCs) is infrequent, being most reported cased described as ductal invasive carcinomas. Invasive pleomorphic lobular carcinoma (PLC) is a distinct morphological variant of invasive lobular carcinoma characterized by higher nuclear atypia and pleomorphism than the classical type. In the best of our knowledge, a PLC with OGCs has not been previously reported.
View Article and Find Full Text PDFWe describe the histological and immunohistochemical features of the changes produced by spiral coil localization wires in the breast parenchyma and lymph nodes of a total of 100 patients undergoing surgery for different breast lesions. Coil wires produced cystic lesions containing a hyaline, mucous-like, PAS-negative fluid. Cavities were lined by cells of variable morphology ranging from synovial-like cells (with a conspicuous epithelial appearance) to mononuclear or multinucleate histiocytic cells that expressed CD68, but were negative for keratins.
View Article and Find Full Text PDFUndifferentiated endometrial carcinoma is an aggressive type of uterine cancer, which is occasionally associated with a low-grade endometrioid carcinoma component. This combination is referred to as "dedifferentiated endometrioid endometrial carcinoma." Neuroendocrine expression may occur in undifferentiated endometrial carcinoma, but its significance in dedifferentiated endometrial carcinomas is unknown.
View Article and Find Full Text PDFmutations represent one of the most prevalent oncogenic driver mutations in non-small cell lung cancer (NSCLC). For many years we have unsuccessfully addressed mutation as a unique disease. The recent widespread use of comprehensive genomic profiling has identified different subgroups with prognostic implications.
View Article and Find Full Text PDFUndifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumors, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well-differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole-exome sequencing of the endometrioid and undifferentiated components, as well as normal myometrium, was also carried out in one case.
View Article and Find Full Text PDFVestigial-like 1 (VGLL1) is a poorly characterized gene encoding a transcriptional co-activator structurally homologous to TAZ and YAP that modulates the Hippo pathway in Drosophila. In this study, we examined the expression of VGLL1 and its intronic miRNA, miR-934, in breast cancer. VGLL1 and miR-934 expression miRNA profiling was carried out on frozen samples of grade 3 invasive ductal carcinomas.
View Article and Find Full Text PDFAlthough it is becoming clear that certain miRNAs fulfil a fundamental role in the regulation of the epithelial-to-mesenchymal transition (EMT), a comprehensive study of the miRNAs associated with this process has yet to be performed. Here, we profiled the signature of miRNA expression in an in vitro model of EMT, ectopically expressing in MDCK cells one of seven EMT transcription factors (SNAI1, SNAI2, ZEB1, ZEB2, TWIST1, TWIST2 or E47) or the EMT inducer LOXL2. In this way, we identified a core subset of deregulated miRNAs that were further validated in vivo, studying endometrial carcinosarcoma (ECS), a tumour entity that represents an extreme example of phenotypic plasticity.
View Article and Find Full Text PDFThe identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations.
View Article and Find Full Text PDFNext generation DNA sequencing (NGS) technologies have revolutionized the pace at which whole genome and exome sequences can be generated. However, despite these advances, many of the methods for targeted resequencing, such as the generation of high-depth exome sequences, are somewhat limited by the relatively large amounts of starting DNA that are normally required. In the case of tumour analysis this is particularly pertinent as many tumour biopsies often return submicrogram quantities of DNA, especially when tumours are microdissected prior to analysis.
View Article and Find Full Text PDFCapan-1 is a well-characterised BRCA2-deficient human cell line isolated from a liver metastasis of a pancreatic adenocarcinoma. Here we report a genome-wide assessment of structural variations and high-depth exome characterization of single nucleotide variants and small insertion/deletions in Capan-1. To identify potential somatic and tumour-associated variations in the absence of a matched-normal cell line, we devised a novel method based on the analysis of HapMap samples.
View Article and Find Full Text PDFBackground: The classical candidate-gene approach has failed to identify novel breast cancer susceptibility genes. Nowadays, massive parallel sequencing technology allows the development of studies unaffordable a few years ago. However, analysis protocols are not yet sufficiently developed to extract all information from the huge amount of data obtained.
View Article and Find Full Text PDFBreast Cancer Res Treat
November 2009
Familial breast cancer represents up to 5% of all breast cancer cases. Recently, our group has performed a new SNP-based linkage study in 19 non-BRCA1/2 families. We found that a single family was linked to regions in two different chromosomes (11q13 and 14q21), and observed a non-parametric LOD score of 11.
View Article and Find Full Text PDF