Proteins and polysaccharides are widely used in food formulation. While most of the proteins are surface active, only few polysaccharides can adsorb at the air-water interface; this is the case of propylene glycol alginates (PGA). It is known that casein glycomacropeptide (CMP), a bioactive polypeptide derived from κ-casein by the action of chymosin, presents a great foaming capacity but provides unstable foams.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2012
The aim of this work was to study the effect of interactions between casein glycomacropeptide (CMP) and β-lactoglobulin (β-lg) at pH 6.5 and 3.5 on the foaming properties of the mixed systems with different CMP:β-lg ratios.
View Article and Find Full Text PDFMilk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own.
View Article and Find Full Text PDFIn this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%).
View Article and Find Full Text PDFThe aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2009
Caseinoglycomacropeptide (GMP) is a hydrophilic glycopeptide released from milk kappa-casein by chymosin hydrolysis during cheese making. GMP is thought to be a potential ingredient for specific dietary applications with several health benefits. In this study GMP was characterized at the air-water interface and its behaviour was related with the self-assembly of GMP in solution as affected by pH.
View Article and Find Full Text PDFThe surface pressure (pi)-area (A) isotherms and Brewster angle microscopy (BAM) images of beta-casein-dioleoyl phosphatidylcholine (DOPC) mixed films spread on buffered water at pH 7 and 9 and at 20 degrees C were determined as a function of the mass fraction of DOPC in the mixture (X(DOPC)). The structural characteristics, miscibility, and topography (morphology and reflectivity) of DOPC-beta-casein mixed films were very dependent on surface pressure and monolayer composition. The structure in DOPC-beta-casein mixed monolayers was liquid-expanded-like, as for pure components.
View Article and Find Full Text PDFThe aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties.
View Article and Find Full Text PDFIn this contribution, we have analyzed the effect of sucrose on dynamic interfacial (dynamic surface pressure and surface dilatational properties) and foaming (foam capacity and foam stability) characteristics of soy globulins (7S and 11S). The protein (at 1 x 10(-3), 1 x 10(-2), 0.1, and 1 wt %) and sucrose (at 0, 0.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2008
The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.).
View Article and Find Full Text PDFIn this contribution, we have analyzed the effect of different strategies, such as change of pH (5 or 7) or ionic strength (at 0.05 and 0.5 M), and addition of sucrose (at 1 M) and Tween 20 (at 1 x 10(-4) M) on interfacial characteristics (adsorption, structure, dynamics of adsorption, and surface dilatational properties) and foam properties (foam capacity and stability) of soy globulins (7S and 11S at 0.
View Article and Find Full Text PDFIn this work we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology), to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of milk protein (beta-casein, caseinate, and beta-lactoglobulin) and monoglyceride (monopalmitin and monoolein) mixed films spread and adsorbed on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (eta(s)) varies greatly with the surface pressure (pi).
View Article and Find Full Text PDFIn this work we have analyzed the structural, topographical, and shear characteristics of mixed monolayers formed by adsorbed beta-lactoglobulin (beta-lg) and spread monoglyceride (monopalmitin or monoolein) on a previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm, Brewster angle microscopy (BAM), and surface shear characteristics were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The pi-A isotherm and BAM images deduced for adsorbed beta-lactoglobulin-monoglyceride mixed films at pi lower than the equilibrium surface pressure of beta-lactoglobulin (pi(e)(beta-lg)) indicate that beta-lactoglobulin and monoglyceride coexist at the interface.
View Article and Find Full Text PDFThe structural and shear characteristics of mixed monolayers formed by an adsorbed Na-caseinate film and a spread monoglyceride (monopalmitin or monoolein) on the previously adsorbed protein film have been analyzed. Measurements of the surface pressure (pi)-area (A) isotherm and surface shear viscosity (eta(s)) were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The structural and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film.
View Article and Find Full Text PDFIn this contribution, we have determined the effect of limited enzymatic hydrolysis on the interfacial (dynamics of adsorption and surface dilatational properties) and foaming (foam formation and stabilization) characteristics of a soy globulin (beta-conglycinin, fraction 7S). The degree of hydrolysis (DH = 0, 2, and 5%), the pH of the aqueous solution (pH = 5 and 7), and the protein concentration in solution (at 0.1, 0.
View Article and Find Full Text PDFIn this work we have analyzed the penetration of betalactoglobulin into a monoglyceride monolayer (monopalmitin or monoolein) spread at the air-water interface and its effects on the structural, dilatational, and topographical characteristics of mixed films. Dynamic tensiometry, surface film balance, Brewster angle microscopy (BAM), and surface dilatational rheology have been used, maintaining the temperature constant at 20 degrees C and the pH and ionic strength at 7 and 0.05 M, respectively.
View Article and Find Full Text PDFIn this work, we have analyzed the structural, topographical, and surface dilatational characteristics of pure beta-lactoglobulin adsorbed films and the effect of the self-assembly of monoglycerides (monopalmitin or monoolein) in beta-lactoglobulin films at the air-water interface. Measurements were performed in a single device that incorporates a Wilhelmy-type film balance, Brewster angle microscopy, and interfacial dilatational rheology. The structural and topographical characteristics of beta-lactoglobulin adsorbed and spread films are similar.
View Article and Find Full Text PDFIn this work, surface film balance and Brewster angle microscopy techniques have been used to analyze the structural characteristics (structure, topography, reflectivity, thickness, miscibility, and interactions) of hydrolysates from sunflower protein isolate (SPI) and dipalmitoylphosphatidylcholine (DPPC) mixed monolayers spread on the air-water interface. The degree of hydrolysis (DH) of SPI, low (5.62%), medium (23.
View Article and Find Full Text PDFThe effect of monoglycerides (monopalmitin and monoolein) on the structural, topographical, and dilatational characteristics of betacasein adsorbed film at the air-water interface has been analyzed by means of surface pressure (pi)-area (A) isotherms, Brewster angle microscopy (BAM), and surface dilatational rheology. The static and dynamic characteristics of the mixed films depend on the interfacial composition and the surface pressure. At surface pressures lower than that for the beta-casein collapse (at the equilibrium surface pressure of the protein, pi(e)(beta-casein)) a mixed film of beta-casein and monoglyceride may exist.
View Article and Find Full Text PDFIn this work, we have analyzed the dynamics of the penetration of beta-casein into monoglyceride monolayers (monopalmitin and monoolein) and the structural, dilatational, and topographical characteristics of mixed films formed by monoglyceride penetrated by beta-casein. Different complementary experimental techniques [dynamic tensiometry, surface film balance, Brewster angle microscopy (BAM), and surface dilatational rheology] have been used, maintaining the temperature constant at 20 degrees C and the pH at 7. The surface pressure of the monoglyceride monolayer at the beginning of the penetration process (at pi(i)MP and pi(i)MO for monopalmitin and monoolein, respectively) was the variable studied.
View Article and Find Full Text PDFThe effect of monoglycerides (monopalmitin and monoolein) on the structural and topographical characteristics of beta-casein adsorbed film at the air-water interface has been analyzed by means of surface pressure (pi)-area (A) isotherms and Brewster angle microscopy (BAM). At surface pressures lower than that for the beta-casein collapse (pi(c)(beta-casein)), attractive interactions between beta-casein and monoglycerides were observed. At higher surface pressures, the collapsed beta-casein is partially displaced from the interface by monoglycerides.
View Article and Find Full Text PDFSurface pressure isotherms and structural and surface dilatational properties of three hydroxypropylmethycelluloses (HPMCs, called E4M, E50LV, and F4M) adsorbed films at the air-water interface were determined. In this work we present evidence that HPMC molecules are able to diffuse and saturate the air-water interface at very low concentrations in the bulk phase. As bulk concentration increased, structural changes at a molecular level occurred at the interface.
View Article and Find Full Text PDFThe structural and topographical characteristics of a sunflower protein isolate (SPI) and its hydrolysates at different degrees of hydrolysis (DH = 5.62%, 23.5%, and 46.
View Article and Find Full Text PDFIndustrial proteins from agriculture of either animal or vegetable origin, including their peptide derivatives, are of great importance, from the qualitative and quantitative point of view, in food formulations (emulsions and foams). A fundamental understanding of the physical, chemical, and functional properties of these proteins is essential if the performance of proteins in foods is to be improved and if underutilized proteins, such as plant proteins (and their hydrolysates and peptides derivatives), are to be increasingly used in traditional and new processed food products (safe, high-quality, health foods with good nutritional value). In this contribution we have determined the main physicochemical characteristics (solubility, composition, and analysis of amino acids) of a sunflower protein isolate (SPI) and its hydrolysates with low (5.
View Article and Find Full Text PDFIn this contribution we are concerned with the study of structure, topography, and surface rheological characteristics under shear conditions of monoglyceride (monopalmitin and monoolein) and milk protein (beta-casein, kappa-casein, caseinate, and WPI) spread monolayers at the air-water interface. Combined surface chemistry (surface film balance and surface shear rheometry) and microscopy (Brewster angle microscopy: BAM) techniques have been applied in this study to pure emulsifiers (proteins and monoglycerides) spread at the air-water interface. To study the shear characteristics of spread films, a homemade canal viscometer was used.
View Article and Find Full Text PDF