We propose improvements to the Dynamic Likelihood Filter (DLF), a Bayesian data assimilation filtering approach, specifically tailored to wave problems. The DLF approach was developed to address the common challenge in the application of data assimilation to hyperbolic problems in the geosciences and in engineering, where observation systems are sparse in space and time. When these observations have low uncertainties, as compared to model uncertainties, the DLF exploits the inherent nature of information and uncertainties to propagate along characteristics to produce estimates that are phase aware as well as amplitude aware, as would be the case in the traditional data assimilation approach.
View Article and Find Full Text PDFExperimental evidence lends support to the conjecture that cell-to-cell communication plays a role in the gradient sensing of chemical species by certain chains of cells. Models have been formulated to explore this idea. For cells with no identifiable sensing structure, Mugler et al.
View Article and Find Full Text PDFPartitioning of red blood cell (RBC) fluxes between the branches of a diverging microvessel bifurcation is generally not proportional to the flow rates, as RBCs preferentially enter the higher-flow branch. A two-dimensional model for RBC motion and deformation is used to investigate the effects of cell-cell mechanical interactions on RBC partitioning in bifurcations. The RBC membrane and cytoplasm are represented by sets of viscoelastic elements immersed in a low Reynolds number flow.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2011
We describe experimental observations of fully developed, large-amplitude bars under the action of a shearing fluid. The experiments were performed in an annular tank filled with water and sheared above by a steady motor source. The same steady shearing flow can produce a variety of different erodible bed manifestations: advective or precessive bars, which refer to bar structures with global regularity and a near-steady precession velocity; interactive bars, the structure of which depends on local rearrangements, which are in turn a response to complex background topography; and dispersive bars, which are created when an initially isolated mound of sand evolves into a train of sand ripples.
View Article and Find Full Text PDFMovement, deformation, and partitioning of mammalian red blood cells (RBCs) in diverging microvessel bifurcations are simulated using a two-dimensional, flexible-particle model. A set of viscoelastic elements represents the RBC membrane and the cytoplasm. Motion of isolated cells is considered, neglecting cell-to-cell interactions.
View Article and Find Full Text PDFFrom algal suspensions to magma upwellings, one finds jets which exhibit complex symmetry-breaking instabilities as they are decelerated by their surroundings. We consider here a model system--a saline jet descending through a salinity gradient--which produces dynamics unlike those of standard momentum jets or plumes. The jet coils like a corkscrew within a conduit of viscously entrained fluid, whose upward recirculation braids the jet, and nearly confines transverse mixing to the narrow conduit.
View Article and Find Full Text PDF