Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days.
View Article and Find Full Text PDFDeveloping scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use.
View Article and Find Full Text PDFCell transplantation success for myocardial infarction (MI) treatment is often hindered by low engraftment due to washout effects during myocardial contraction. A clinically viable biomaterial that enhances cell retention can optimize intramyocardial cell delivery. In this study, a therapeutic cell delivery method is developed for MI treatment utilizing a photocrosslinkable gelatin methacryloyl (GelMA) hydrogel.
View Article and Find Full Text PDFBackground: Assessment of endothelial colony-forming cell (ECFC) number and vasculogenic properties is crucial for exploring vascular diseases and regeneration strategies. A previous survey of the Scientific and Standardization Committee on Vascular Biology of the International Society on Thrombosis and Haemostasis clarified key methodological points but highlighted a lack of standardization associated with ECFC culture.
Objectives: The aim of this study was to provide expert consensus guidance on ECFC isolation and culture.
Islet transplantation has been established as a viable treatment modality for type 1 diabetes. However, the side effects of the systemic immunosuppression required for patients often outweigh its benefits. Here, we engineer programmed death ligand-1 and cytotoxic T lymphocyte antigen 4 immunoglobulin fusion protein-modified mesenchymal stromal cells (MSCs) as accessory cells for islet cotransplantation.
View Article and Find Full Text PDFBackground: Endothelial-to-mesenchymal-transition (EndMT) plays a major role in cardiac fibrosis, including endocardial fibroelastosis but the stimuli are still unknown. We developed an endothelial cell (EC) culture and a whole heart model to test whether mechanical strain triggers TGF-β-mediated EndMT.
Methods: Isolated ECs were exposed to 10% uniaxial static stretch for 8 h (stretch) and TGF-β-mediated EndMT was determined using the TGF-β-inhibitor SB431542 (stretch + TGF-β-inhibitor), BMP-7 (stretch + BMP-7) or losartan (stretch + losartan), and isolated mature and immature rats were exposed to stretch through a weight on the apex of the left ventricle.
Encapsulation of insulin-producing cells is a promising strategy for treatment of type 1 diabetes. However, engineering an encapsulation device that is both safe (i.e.
View Article and Find Full Text PDFPharmacotherapy of vascular anomalies has limited efficacy and potentially limiting toxicity. Targeted nanoparticle (NP) drug delivery systems have the potential to accumulate within tissues where the vasculature is impaired, potentially leading to high drug levels (increased efficacy) in the diseased tissue and less in off-target sites (less toxicity). Here, we investigate whether NPs can be used to enhance drug delivery to bioengineered human vascular networks (hVNs) that are a model of human vascular anomalies.
View Article and Find Full Text PDFIslet transplantation has shown promise as a curative therapy for type 1 diabetes (T1D). However, the side effects of systemic immunosuppression and limited long-term viability of engrafted islets, together with the scarcity of donor organs, highlight an urgent need for the development of new, improved, and safer cell-replacement strategies. Induction of local immunotolerance to prevent allo-rejection against islets and stem cell derived β cells has the potential to improve graft function and broaden the applicability of cellular therapy while minimizing adverse effects of systemic immunosuppression.
View Article and Find Full Text PDFTransplantation of stem cell-derived β (SC-β) cells represents a promising therapy for type 1 diabetes (T1D). However, the delivery, maintenance, and retrieval of these cells remain a challenge. Here, we report the design of a safe and functional device composed of a highly porous, durable nanofibrous skin and an immunoprotective hydrogel core.
View Article and Find Full Text PDFRegeneration of large bones remains a challenge in surgery. Recent developmental engineering efforts aim to recapitulate endochondral ossification (EO), a critical step in bone formation. However, this process entails the condensation of mesenchymal stem cells (MSCs) into cartilaginous templates, which requires long-term cultures and is challenging to scale up.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues.
View Article and Find Full Text PDFEndothelial colony-forming cells (ECFCs) are human vasculogenic cells described as potential cell therapy product and good candidates for being a vascular liquid biopsy. Since interleukin-8 (IL-8) is a main actor in senescence, its ability to interact with ECFCs has been explored. However, expression of CXCR1 and CXCR2, the two cellular receptors for IL-8, by ECFCs remain controversial as several teams published contradictory reports.
View Article and Find Full Text PDFHuman induced pluripotent stem cell (h-iPSC)-derived endothelial cells (h-iECs) have become a valuable tool in regenerative medicine. However, current differentiation protocols remain inefficient and lack reliability. Here, we describe a method for rapid, consistent, and highly efficient generation of h-iECs.
View Article and Find Full Text PDFThe capability of forming functional blood vessel networks is critical for the characterization of endothelial cells. In this chapter, we will review a modified in vivo vascular network forming assay by replacing traditional mouse tumor-derived Matrigel with a well-defined collagen-fibrin hydrogel. The assay is reliable and does not require special equipment, surgical procedure, or a skilled person to perform.
View Article and Find Full Text PDFHemophilia A (HA) is a bleeding disorder caused by mutations in the F8 gene encoding coagulation factor VIII (FVIII). Current treatments are based on regular infusions of FVIII concentrates throughout a patient's life. Alternatively, viral gene therapies that directly deliver F8 in vivo have shown preliminary successes.
View Article and Find Full Text PDFTissue engineering holds great promise in regenerative medicine. However, the field of tissue engineering faces a myriad of difficulties. A major challenge is the necessity to integrate vascular networks into bioengineered constructs to enable physiological functions including adequate oxygenation, nutrient delivery, and removal of waste products.
View Article and Find Full Text PDF