Publications by authors named "Juan L Serra"

In this work, magnetic cross-linked enzyme aggregates (mCLEAs) of CALB (lipase B from Candida antarctica) were prepared and characterized. Moreover, a method for an easy, sustainable and economic extraction of lipids from nitrogen-starved cells of Chlorella vulgaris var L3 was developed. Then, the extracted lipids (oils and free fatty acids, FFAs) were converted to biodiesel using mCLEAs and chemical acid catalysis.

View Article and Find Full Text PDF

Enzyme-catalyzed production of biodiesel is the object of extensive research due to the global shortage of fossil fuels and increased environmental concerns. Herein we report the preparation and main characteristics of a novel biocatalyst consisting of Cross-Linked Enzyme Aggregates (CLEAs) of Candida antarctica lipase B (CALB) which are covalently bound to magnetic nanoparticles, and tackle its use for the synthesis of biodiesel from non-edible vegetable and waste frying oils. For this purpose, insolubilized CALB was covalently cross-linked to magnetic nanoparticles of magnetite which the surface was functionalized with -NH2 groups.

View Article and Find Full Text PDF

Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field.

View Article and Find Full Text PDF

Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied.

View Article and Find Full Text PDF

The extracellular medium-chain-length polyhydroxyalkanote (MCL-PHA) depolymerase from an isolate identified as Streptomyces venezuelae SO1 was purified to electrophoretic homogeneity and characterized. The molecular mass and pI of the purified enzyme were approximately 27 kDa and 5.9, respectively.

View Article and Find Full Text PDF

The extracellular medium-chain-length polyhydroxyalkanoate (MCL-PHA) depolymerase of Pseudomonas fluorescens GK13 catalyzes the hydrolysis of poly(3-hydroxyoctanoic acid) [P(3HO)]. Based on the strong tendency of the enzyme to interact with hydrophobic materials, a low-cost method which allows the rapid and easy purification and immobilization of the enzyme has been developed. Thus, the extracellular P(3HO) depolymerase present in the culture broth of cells of P.

View Article and Find Full Text PDF

Phenol hydroxylase that catalyzes the conversion of phenol to catechol in Rhodococcus erythropolis UPV-1 was identified as a two-component flavin-dependent monooxygenase. The two proteins are encoded by the genes pheA1 and pheA2, located very closely in the genome. The sequenced pheA1 gene was composed of 1,629 bp encoding a protein of 542 amino acids, whereas the pheA2 gene consisted of 570 bp encoding a protein of 189 amino acids.

View Article and Find Full Text PDF

A genomic region from the thermophilic, filamentous, nondiazotrophic cyanobacterium Phormidium laminosum including nrtC and nrtD was cloned and sequenced. These genes encode NrtC and NrtD, the ATP-binding subunits of the ABC bispecific transporter of nitrate/nitrite NRT. We report a different nrtC sequence from the one previously reported (Merchán et al.

View Article and Find Full Text PDF

The enzyme responsible for formaldehyde removal in industrial wastewaters by cells of Rhodococcus erythropolis UPV-1 was identified as a broad-specific aldehyde dehydrogenase (EC 1.2.1.

View Article and Find Full Text PDF

Most cyanobacteria take up nitrate or nitrite through a multisubunit ABC transporter (ATP-binding cassette) located in the cytoplasmic membrane. Nitrate and nitrite transport activity is instantaneously blocked by the presence of ammonium in the medium. Previous biochemical studies reported the existence of phosphorylation/dephosphorylation events of the nitrate transporter (NRT) related to the presence of ammonium-sensitive kinase/phosphatase activities in plasma membranes of the cyanobacterium Synechococcus elongatus PCC 6301.

View Article and Find Full Text PDF

The N-terminal domain of NrtC, the ATP-binding subunit of nitrate/nitrite ABC-transporter in the cyanobacterium Phormidium laminosum, has been expressed in Escherichia coli as a histidine-tagged fusion protein (His(6)NrtC1). Binding of ATP to the pure His(6)NrtC1 was characterized using the nucleotide analogue TNP-ATP [2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate]. Fluorescence assays showed that His(6)NrtC1 specifically binds Mg(2+) TNP-ATP with high affinity, binding being dependent on protein concentration.

View Article and Find Full Text PDF

A strain of Rhodococcus erythropolis has been isolated and identified by 16S rRNA sequencing. Cells acclimated to phenol can be adsorbed on the external surface of beads of the ceramic support Biolite where they grow forming a network of large filaments. Exponentially-growing cells were adsorbed faster than their stationary-phase counterparts.

View Article and Find Full Text PDF

In Phormidium laminosum cells, nitrogen starvation caused a decrease in the intracellular levels of all amino acids, except glutamate, and an increase in the total level of the analyzed organic acids. The addition of nitrate or ammonium to N-starved cells resulted in substantial increases in the pool size of most amino acids. Upon addition of ammonium the total level of organic acids diminished, whereas it increased upon addition of nitrate, after a transient decay during the first minutes.

View Article and Find Full Text PDF