Publications by authors named "Juan L Gomez"

Alcohol use disorder (AUD) is a highly prevalent public health problem. The ghrelin system has been identified as a potential target for therapeutic intervention for AUD. Previous work showed that systemic administration of the growth hormone secretagogue receptor (GHSR) antagonist DLys reduced alcohol intake and preference in male mice.

View Article and Find Full Text PDF

Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [F]fluoroestradiol ([F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the role of the ghrelin receptor (GHSR) in feeding behaviors and diet-induced obesity (DIO) by comparing global GHSR-KO and wild-type (WT) rats on high-fat and regular diets over 12 months.
  • Findings reveal that GHSR gene deletion protects male rats from DIO, decreases their food intake on high-fat diets, and enhances thermogenesis and brain glucose uptake, while these effects were not observed in female rats.
  • The use of a GHSR inverse agonist reduced food intake induced by ghrelin in males and lower binge-eating in both sexes, indicating GHSR as a potential target for obesity treatments.
View Article and Find Full Text PDF

Chemogenetic tools are designed to control neuronal signaling. These tools have the potential to contribute to the understanding of neuropsychiatric disorders and to the development of new treatments. One such chemogenetic technology comprises modified Pharmacologically Selective Actuator Modules (PSAMs) paired with Pharmacologically Selective Effector Molecules (PSEMs).

View Article and Find Full Text PDF

Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo, we developed photoactivatable oxymorphone (PhOX) and photoactivatable naloxone (PhNX), photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone.

View Article and Find Full Text PDF

Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner.

View Article and Find Full Text PDF

Background: (S)-ketamine is an NMDA receptor antagonist, but it also binds to and activates mu opioid receptors (MORs) and kappa opioid receptors in vitro. However, the extent to which these receptors contribute to (S)-ketamine's in vivo pharmacology is unknown.

Methods: We investigated the extent to which (S)-ketamine interacts with opioid receptors in rats by combining in vitro and in vivo pharmacological approaches, in vivo molecular and functional imaging, and behavioral procedures relevant to human abuse liability.

View Article and Find Full Text PDF

Unlabelled: Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors , we developed PhOX and PhNX, photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone.

View Article and Find Full Text PDF

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells.

View Article and Find Full Text PDF

Nicotine exposure is associated with regional changes in brain nicotinic acetylcholine receptors subtype expression patterns as a function of dose and age at the time of exposure. Moreover, nicotine dependence is associated with changes in brain circuit functional connectivity, but the relationship between such connectivity and concomitant regional distribution changes in nicotinic acetylcholine receptor subtypes following nicotine exposure is not understood. Although smoking typically begins in adolescence, developmental changes in brain circuits and nicotinic acetylcholine receptors following chronic nicotine exposure remain minimally investigated.

View Article and Find Full Text PDF

Mu opioid receptor (MOR) agonists comprise the most effective analgesics, but their therapeutic utility is limited by adverse effects. One approach for limiting such effects has been to develop "biased" MOR agonists that show preference for activating G protein over β-Arrestin signaling. However, the notion of biased agonism has been challenged by recent studies.

View Article and Find Full Text PDF

Focused ultrasound (FUS) is a powerful tool for noninvasive modulation of deep brain activity with promising therapeutic potential for refractory epilepsy; however, tools for examining FUS effects on specific cell types within the deep brain do not yet exist. Consequently, how cell types within heterogeneous networks can be modulated and whether parameters can be identified to bias these networks in the context of complex behaviors remains unknown. To address this, we developed a fiber Photometry Coupled focused Ultrasound System (PhoCUS) for simultaneously monitoring FUS effects on neural activity of subcortical genetically targeted cell types in freely behaving animals.

View Article and Find Full Text PDF

Purpose: 6-O-(2-[F]Fluoroethyl)-6-O-desmethyl-diprenorphine ([F]FE-DPN) is regarded as a non-selective opioid receptor radiotracer.

Procedure: Here, we report the first characterization of [F]FE-DPN synthesized from the novel precursor, 6-O-(2-tosyloxyethoxy)-6-O-desmethyl-3-O-trityl-diprenorphine (TE-TDDPN), using a one-pot, two-step nucleophilic radiosynthesis to image opioid receptors in rats and mice using positron emission tomography.

Results: We also show that [F]FE-DPN and [H]DPN exhibit negligible brain uptake in mu opioid receptor (MOR) knockout mice.

View Article and Find Full Text PDF

The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives.

View Article and Find Full Text PDF

Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects.

View Article and Find Full Text PDF

Non-human primate (NHP) models are essential for developing and translating new treatments that target neural circuit dysfunction underlying human psychopathology. As a proof-of-concept for treating neuropsychiatric disorders, we used a NHP model of pathological anxiety to investigate the feasibility of decreasing anxiety by chemogenetically (DREADDs [designer receptors exclusively activated by designer drugs]) reducing amygdala neuronal activity. Intraoperative MRI surgery was used to infect dorsal amygdala neurons with AAV5-hSyn-HA-hM4Di in young rhesus monkeys.

View Article and Find Full Text PDF

Ketamine, a racemic mixture of (S)-ketamine and (R)-ketamine enantiomers, has been used as an anesthetic, analgesic and more recently, as an antidepressant. However, ketamine has known abuse liability (the tendency of a drug to be used in non-medical situations due to its psychoactive effects), which raises concerns for its therapeutic use. (S)-ketamine was recently approved by the United States' FDA for treatment-resistant depression.

View Article and Find Full Text PDF

Transgenic neuromodulation tools have transformed the field of neuroscience over the past two decades by enabling targeted manipulation of neuronal populations and circuits with unprecedented specificity. Chemogenetic and optogenetic neuromodulation systems are among the most widely used and allow targeted control of neuronal activity through the administration of a selective compound or light, respectively. Innovative genetic targeting strategies are utilized to transduce specific cells to express transgenic receptors and opsins capable of manipulating neuronal activity.

View Article and Find Full Text PDF

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are a popular chemogenetic technology for manipulation of neuronal activity in uninstrumented awake animals with potential for human applications as well. The prototypical DREADD agonist clozapine N-oxide (CNO) lacks brain entry and converts to clozapine, making it difficult to apply in basic and translational applications. Here we report the development of two novel DREADD agonists, JHU37152 and JHU37160, and the first dedicated F positron emission tomography (PET) DREADD radiotracer, [F]JHU37107.

View Article and Find Full Text PDF

Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs).

View Article and Find Full Text PDF

Objective: We investigated the association of genetic polymorphisms in chemokine and chemokine receptor genes with poor immunological recovery in HIV patients starting combined antiretroviral therapy (cART) with low CD4 T-cell counts.

Methods: A case-control study was conducted in 412 HIV-infected patients starting cART with CD4 T-cell count <200 cells/μL and successful viral control for two years. CD4 count increase below 200 cells/μL after two years on cART was used to define INR (immunological non-responder) patients.

View Article and Find Full Text PDF

Chemogenetics enables noninvasive chemical control over cell populations in behaving animals. However, existing small-molecule agonists show insufficient potency or selectivity. There is also a need for chemogenetic systems compatible with both research and human therapeutic applications.

View Article and Find Full Text PDF