Creating a story is a challenging task due to the the complex relations between the parts that make it up, which is why many new stories are built on those cohesive elements or patterns, called tropes that have been shown to work in the past. A trope is a recurring storytelling device or pattern, or sometimes a meta-element, used by the authors to express ideas that the audience can recognize or relate to, such as the Hero's Journey. Discovering tropes and how they cluster in popular works and doing it at scale to generate new plots may benefit writers; in this paper, we analyze them and use a principled procedure to identify trope combinations, or communities, that could possible be successful.
View Article and Find Full Text PDFThis paper investigates the performance and scalability of a new update strategy for the particle swarm optimization (PSO) algorithm. The strategy is inspired by the Bak-Sneppen model of co-evolution between interacting species, which is basically a network of fitness values (representing species) that change over time according to a simple rule: the least fit species and its neighbors are iteratively replaced with random values. Following these guidelines, a steady state and dynamic update strategy for PSO algorithms is proposed: only the least fit particle and its neighbors are updated and evaluated in each time-step; the remaining particles maintain the same position and fitness, unless they meet the update criterion.
View Article and Find Full Text PDF