Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages.
View Article and Find Full Text PDFAlcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response.
View Article and Find Full Text PDFAims: Inflammation-coupling tubular damage (ICTD) contributes to pathogenesis of septic acute kidney injury (AKI), in which insulin-like growth factor-binding protein 7 (IGFBP-7) serves as a biomarker for risk stratification. The current study aims to discern how IGFBP-7 signalling influences ICTD, the mechanisms that underlie this process and whether blockade of the IGFBP-7-dependent ICTD might have therapeutic value for septic AKI.
Materials And Methods: In vivo characterization was carried out in B6/JGpt-Igfbp7/Gpt mice subjected to cecal ligation and puncture (CLP).
High-dose ascorbate confers tubular mitophagy responsible for septic acute kidney injury (AKI) amelioration, yet its biological roles in immune regulation remain poorly understood. The role of tubular mitophagy in macrophage polarization upon high-dose ascorbate treatment was assessed by fluorescence-activated cell sorter analysis (FACS) and by immunofluorescence in AKI models of LPS-induced endotoxemia (LIE) from ; mice. The underlying mechanisms were revealed by RNA-sequencing, gene set enrichment analysis (GSEA), luciferase reporter, chromatin immunoprecipitation (ChIP) and adeno-associated viral vector serotype 9 (AAV9) delivery assays.
View Article and Find Full Text PDFRandom forest is a popular prediction approach for handling high dimensional covariates. However, it often becomes infeasible to interpret the obtained high dimensional and non-parametric model. Aiming for an interpretable predictive model, we develop a forward variable selection method using the continuous ranked probability score (CRPS) as the loss function.
View Article and Find Full Text PDFTo investigate the role and the underlying mechanism of scaffold attachment factor B () in the progression of colorectal cancer (CRC). SAFB expression was analyzed in the Cancer Outlier Profile Analysis of Oncomine and in 175 paraffin-embedded archived CRC tissues. Gene Ontology analyses were performed to explore the mechanism of in CRC progression.
View Article and Find Full Text PDFThe Groucho transcriptional co-repressor TLE4 protein has been shown to be a tumor suppressor in a subset of acute myeloid leukemia. However, little is known about its role in development and progression of solid tumor. In this study, we found that the expression of TLE4 in colorectal cancer (CRC) tissues was significantly higher than that in their matched adjacent intestine epithelial tissues.
View Article and Find Full Text PDFThe Leucine zipper tumor suppressor gene 1 (LZTS1/FEZ1) gene was originally identified as a potential tumor suppressor. However, the expression pattern and the role of LZTS1 in the progression of colorectal cancer (CRC) have not been well characterized. Herein, we reported that LZTS1 was markedly reduced in CRC tissues compared with matched adjacent normal intestine epithelial tissues.
View Article and Find Full Text PDFThe objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario.
View Article and Find Full Text PDF