Sensors (Basel)
March 2023
Nowadays, the use of renewable, green/eco-friendly technologies is attracting the attention of researchers, with a view to overcoming recent challenges that must be faced to guarantee the availability of Electric Vehicles (EVs). Therefore, this work proposes a methodology based on Genetic Algorithms (GA) and multivariate regression for estimating and modeling the State of Charge (SOC) in Electric Vehicles. Indeed, the proposal considers the continuous monitoring of six load-related variables that have an influence on the SOC (State of Charge), specifically, the vehicle acceleration, vehicle speed, battery bank temperature, motor RPM, motor current, and motor temperature.
View Article and Find Full Text PDFThe rapid growth in the industrial sector has required the development of more productive and reliable machinery, and therefore, leads to complex systems. In this regard, the automatic detection of unknown events in machinery represents a greater challenge, since uncharacterized catastrophic faults can occur. However, the existing methods for anomaly detection present limitations when dealing with highly complex industrial systems.
View Article and Find Full Text PDFScientific and technological advances in the field of rotatory electrical machinery are leading to an increased efficiency in those processes and systems in which they are involved. In addition, the consideration of advanced materials, such as hybrid or ceramic bearings, are of high interest towards high-performance rotary electromechanical actuators. Therefore, most of the diagnosis approaches for bearing fault detection are highly dependent of the bearing technology, commonly focused on the metallic bearings.
View Article and Find Full Text PDFFault diagnosis in manufacturing systems represents one of the most critical challenges dealing with condition-based monitoring in the recent era of smart manufacturing. In the current Industry 4.0 framework, maintenance strategies based on traditional data-driven fault diagnosis schemes require enhanced capabilities to be applied over modern production systems.
View Article and Find Full Text PDFThe detection of faulty machinery and its automated diagnosis is an industrial priority because efficient fault diagnosis implies efficient management of the maintenance times, reduction of energy consumption, reduction in overall costs and, most importantly, the availability of the machinery is ensured. Thus, this paper presents a new intelligent multi-fault diagnosis method based on multiple sensor information for assessing the occurrence of single, combined, and simultaneous faulty conditions in an induction motor. The contribution and novelty of the proposed method include the consideration of different physical magnitudes such as vibrations, stator currents, voltages, and rotational speed as a meaningful source of information of the machine condition.
View Article and Find Full Text PDF