The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant challenges worldwide, including diverse clinical outcomes and prolonged post-recovery symptoms known as Long COVID or Post-COVID-19 syndrome. Emerging evidence suggests a crucial role of metabolic reprogramming in the infection's long-term consequences. This study employs a novel approach utilizing machine learning (ML) and explainable artificial intelligence (XAI) to analyze metabolic alterations in COVID-19 and Post-COVID-19 patients.
View Article and Find Full Text PDFType 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem.
View Article and Find Full Text PDFSimilar to what it has been reported with preceding viral epidemics (such as MERS, SARS, or influenza), SARS-CoV-2 infection is also affecting the human immunometabolism with long-term consequences. Even with underreporting, an accumulated of almost 650 million people have been infected and 620 million recovered since the start of the pandemic; therefore, the impact of these long-term consequences in the world population could be significant. Recently, the World Health Organization recognized the post-COVID syndrome as a new entity, and guidelines are being established to manage and treat this new condition.
View Article and Find Full Text PDFCOVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico.
View Article and Find Full Text PDFBackground: The early diagnosis of diabetic nephropathy (DN) is essential for improving the prognosis and effectively manage patients affected with this disease. The standard biomarkers, including albuminuria and glomerular filtration rate, are not very precise. New molecular biomarkers are needed to more accurately identify DN and better predict disease progression.
View Article and Find Full Text PDFAccording to the World Health Organization (WHO), type 2 diabetes mellitus (T2DM) is a result of the inefficient use of insulin by the body. More than 95% of people with diabetes have T2DM, which is largely due to excess weight and physical inactivity. This study proposes an intelligent feature selection of metabolites related to different stages of diabetes, with the use of genetic algorithms (GA) and the implementation of support vector machines (SVMs), K-Nearest Neighbors (KNNs) and Nearest Centroid (NEARCENT) and with a dataset obtained from the Instituto Mexicano del Seguro Social with the protocol name of the following: "Análisis metabolómico y transcriptómico diferencial en orina y suero de pacientes pre diabéticos, diabéticos y con nefropatía diabética para identificar potenciales biomarcadores pronósticos de daño renal" (differential metabolomic and transcriptomic analyses in the urine and serum of pre-diabetic, diabetic and diabetic nephropathy patients to identify potential prognostic biomarkers of kidney damage).
View Article and Find Full Text PDFDifferences in clinical manifestations, immune response, metabolic alterations, and outcomes (including disease severity and mortality) between men and women with COVID-19 have been reported since the pandemic outbreak, making it necessary to implement sex-specific biomarkers for disease diagnosis and treatment. This study aimed to identify sex-associated differences in COVID-19 patients by means of a genetic algorithm (GALGO) and machine learning, employing support vector machine (SVM) and logistic regression (LR) for the data analysis. Both algorithms identified kynurenine and hemoglobin as the most important variables to distinguish between men and women with COVID-19.
View Article and Find Full Text PDFGestational diabetes mellitus (GDM) is one of the most frequent pregnancy complications with potential adverse outcomes for mothers and newborns. Its effects on the newborn appear during the neonatal period or early childhood. Therefore, an early diagnosis is crucial to prevent the development of chronic diseases later in adult life.
View Article and Find Full Text PDFViral sepsis has been proposed as an accurate term to describe all multisystemic dysregulations and clinical findings in severe and critically ill COVID-19 patients. The adoption of this term may help the implementation of more accurate strategies of early diagnosis, prognosis, and in-hospital treatment. We accurately quantified 110 metabolites using targeted metabolomics, and 13 cytokines/chemokines in plasma samples of 121 COVID-19 patients with different levels of severity, and 37 non-COVID-19 individuals.
View Article and Find Full Text PDFResearch exploring the development and outcome of COVID-19 infections has led to the need to find better diagnostic and prognostic biomarkers. This cross-sectional study used targeted metabolomics to identify potential COVID-19 biomarkers that predicted the course of the illness by assessing 110 endogenous plasma metabolites from individuals admitted to a local hospital for diagnosis/treatment. Patients were classified into four groups (≈ 40 each) according to standard polymerase chain reaction (PCR) COVID-19 testing and disease course: PCR-/controls (i.
View Article and Find Full Text PDFThe knowledge of normal metabolite values for neonates is key to establishing robust cut-off values to diagnose diseases, to predict the occurrence of new diseases, to monitor a neonate's metabolism, or to assess their general health status. For full term-newborns, many reference biochemical values are available for blood, serum, plasma and cerebrospinal fluid. However, there is a surprising lack of information about normal urine concentration values for a large number of important metabolites in neonates.
View Article and Find Full Text PDF