Publications by authors named "Juan Jesus Vicente"

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach.

View Article and Find Full Text PDF

Centrosomes are the principal microtubule-organizing centers of the cell and play an essential role in mitotic spindle function. Centrosome biogenesis is achieved by strict control of protein acquisition and phosphorylation prior to mitosis. Defects in this process promote fragmentation of pericentriolar material culminating in multipolar spindles and chromosome missegregation.

View Article and Find Full Text PDF

Protein activity is generally functionally integrated and spatially restricted to key locations within the cell. Knocksideways experiments allow researchers to rapidly move proteins to alternate or ectopic regions of the cell and assess the resultant cellular response. Briefly, individual proteins to be tested using this approach must be modified with moieties that dimerize under treatment with rapamycin to promote the experimental spatial relocalizations.

View Article and Find Full Text PDF

Microtubule targeting agents ( ) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells can escape death in mitosis and exit mitosis, and become malignant polyploid giant cancer cells ( ). Considering the low number of malignant cells undergoing mitosis in tumor tissue, killing these cells in interphase may represent a favored antitumor approach.

View Article and Find Full Text PDF

Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDAR) are glutamate-gated calcium channels named after their artificial agonist. NMDAR are implicated in cell proliferation under normal and pathophysiological conditions. However, the role of NMDAR during mitosis has not yet been explored in individual cells.

View Article and Find Full Text PDF

Chemosensory systems are highly organized signaling pathways that allow bacteria to adapt to environmental changes. The Frz chemosensory system from M. xanthus possesses two CheW-like proteins, FrzA (the core CheW) and FrzB.

View Article and Find Full Text PDF

The microtubule (MT)-depolymerizing activity of MCAK/Kif2C can be quantified by expressing the motor in cultured cells and measuring tubulin fluorescence levels after enough hours have passed to allow tubulin autoregulation to proceed. This method allows us to score the impact of point mutations within the motor domain. We found that, despite their distinctly different activities, many mutations that impact transport kinesins also impair MCAK/Kif2C's depolymerizing activity.

View Article and Find Full Text PDF

Microtubules play essential roles in cellular organization, cargo transport, and chromosome segregation during cell division. During mitosis microtubules form a macromolecular structure known as the mitotic spindle that is responsible for the accurate segregation of chromosomes between the two daughter cells. This is accomplished thanks to finely tuned control of microtubule dynamics.

View Article and Find Full Text PDF

GPR124 is involved in embryonic development and remains expressed by select organs. The importance of GPR124 during development suggests that its aberrant expression might participate in tumor growth. Here we show that both increases and decreases in GPR124 expression in glioblastoma cells reduce cell proliferation by differentially altering the duration mitotic progression.

View Article and Find Full Text PDF

We describe a general computational approach to designing self-assembling helical filaments from monomeric proteins and use this approach to design proteins that assemble into micrometer-scale filaments with a wide range of geometries in vivo and in vitro. Cryo-electron microscopy structures of six designs are close to the computational design models. The filament building blocks are idealized repeat proteins, and thus the diameter of the filaments can be systematically tuned by varying the number of repeat units.

View Article and Find Full Text PDF

Microtubules are highly dynamic structures that play an integral role in fundamental cellular functions. Different α- and β-tubulin isotypes are thought to confer unique dynamic properties to microtubules. The tubulin isotypes have highly conserved structures, differing mainly in their C-terminal tail sequences.

View Article and Find Full Text PDF

The multispanning membrane protein vacuole membrane protein 1 (VMP1) marks and regulates endoplasmic reticulum (ER)-domains associated with diverse ER-organelle membrane contact sites. A proportion of these domains associate with endosomes during their maturation and remodeling. We found that these VMP1 domains are enriched in choline/ethanolamine phosphotransferase and phosphatidylinositol synthase (PIS1), 2 ER enzymes required for the synthesis of various phospholipids.

View Article and Find Full Text PDF

Glioblastoma multiforme is a devastating and intractable type of cancer. Current antineoplastic drugs do not improve the median survival of patients diagnosed with glioblastoma multiforme beyond 14 to 15 months, in part because the blood-brain barrier is generally impermeable to many therapeutic agents. Drugs that target microtubules (MT) have shown remarkable efficacy in a variety of cancers, yet their use as glioblastoma multiforme treatments has also been hindered by the scarcity of brain-penetrant MT-targeting compounds.

View Article and Find Full Text PDF

Depletion of microtubule (MT) regulators can initiate stable alterations in MT assembly rates that affect chromosome instability and mitotic spindle function, but the manner by which cellular MT assembly rates can stably increase or decrease is not understood. To investigate this phenomenon, we measured the response of microtubule assembly to both rapid and long-term loss of MT regulators MCAK/Kif2C and Kif18A. Depletion of MCAK/Kif2C by siRNA stably decreases MT assembly rates in mitotic spindles, whereas depletion of Kif18A stably increases rates of assembly.

View Article and Find Full Text PDF

The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage.

View Article and Find Full Text PDF