Cytosolic carboxypeptidase 5 (CCP5) is a member of a subfamily of enzymes that cleave C-terminal and/or side chain amino acids from tubulin. CCP5 was proposed to selectively cleave the branch point of glutamylated tubulin, based on studies involving overexpression of CCP5 in cell lines and detection of tubulin forms with antisera. In the present study, we examined the activity of purified CCP5 toward synthetic peptides as well as soluble α- and β-tubulin and paclitaxel-stabilized microtubules using a combination of antisera and mass spectrometry to detect the products.
View Article and Find Full Text PDFCytosolic carboxypeptidase 1 (CCP1) is a metallopeptidase that removes C-terminal and side-chain glutamates from tubulin. The Purkinje cell degeneration (pcd) mouse lacks CCP1 due to a mutation. Previously, elevated levels of peptides derived from cytosolic and mitochondrial proteins were found in adult pcd mouse brain, raising the possibility that CCP1 functions in the degradation of intracellular peptides.
View Article and Find Full Text PDFThe Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation.
View Article and Find Full Text PDFSTAT1 (signal transducer and activator of transcription 1) has been implicated as a mediator of a variety of biological responses in response to stimulation by specific growth factors and cytokines. To understand better the role of STAT1 in the interferon-gamma (IFN-gamma)-induced phenotype, we generated an active form of STAT1 (STAT1C) by substituting Cys residues for both Arg-656 and Asn-658 within the C-terminal loop of the STAT1 SH2 domain. The IFN-gamma activation site element was stimulated and bound efficiently by STAT1C without IFN-gamma treatment.
View Article and Find Full Text PDF