The proliferation and great variety of low-cost air quality (AQ) sensors, combined with their flexibility and energy efficiency, gives an opportunity to integrate them into Wireless Sensor Networks (WSN). However, with these sensors, AQ monitoring poses a significant challenge, as the data collection and analysis process is complex and prone to errors. Although these sensors do not meet the performance requirements for reference regulatory-equivalent monitoring, they can provide informative measurements and more if we can adjust and add further processing to their raw measurements.
View Article and Find Full Text PDFVehicle platoons involve groups of vehicles travelling together at a constant inter-vehicle distance, with different common benefits such as increasing road efficiency and fuel saving. Vehicle platooning requires highly reliable wireless communications to keep the group structure and carry out coordinated maneuvers in a safe manner. Focusing on infrastructure-assisted cellular vehicle to anything (V2X) communications, the amount of control information to be exchanged between each platoon vehicle and the base station is a critical factor affecting the communication latency.
View Article and Find Full Text PDFSound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described.
View Article and Find Full Text PDFRadio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.
View Article and Find Full Text PDFWireless Sensor Networks (WSNs) are composed of spatially distributed autonomous sensor devices, named motes. These motes have their own power supply, processing unit, sensors and wireless communications However with many constraints, such as limited energy, bandwidth and computational capabilities. In these networks, at least one mote called a sink, acts as a gateway to connect with other networks.
View Article and Find Full Text PDFIndoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made.
View Article and Find Full Text PDFIn this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.
View Article and Find Full Text PDF