Different conceptions of disturbance differ in the degree to which they appeal to mechanisms that are general and equivalent, or species-, functional group-, or interaction-specific. Some concepts of disturbance, for example, predict that soil disturbances and herbivory have identical impacts on species richness via identical mechanisms (reduction in biomass and in competition). An alternative hypothesis is that the specific traits of disturbance agents (small mammals) and plants differentially affect the richness or abundance of different plant groups.
View Article and Find Full Text PDFGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO flux, commonly though imprecisely termed soil respiration (R ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency R measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well.
View Article and Find Full Text PDFThe global expansion of tree plantations is often claimed to have positive effects for mitigating global warming, preventing soil erosion, and reducing biodiversity loss. However, questions remain unanswered about the impacts of plantations on belowground diversity and soil properties. Here, we examine how forestry plantations of exotic trees affect critical soil functions and the composition of invertebrate assemblages, by comparing invertebrate diversity and soil physico-chemical properties between non-native Pinus radiata plantations, and nearby native forests in a region of extensive plantation activity in south-central Chile.
View Article and Find Full Text PDFPremise Of The Study: Plant responses to past climate change could have been shaped by life-history traits. Here we explore the influence of life form on the response of xerophytic plants to Quaternary climate fluctuations, through a comparison of genetic patterns of codistributed herbaceous and shrubby lineages of the genus Nolana.
Methods: We reconstructed the phylogeographic history of a herbaceous lineage of three species of Nolana distributed from a northern arid zone (30°S) to a southern wet-temperate (42°S) zone, by sequencing two cpDNA regions.
The Mediterranean region of central Chile is experiencing extensive "mega-droughts" with detrimental effects for the environment and economy of the region. In the northern hemisphere, nitrogen (N) limitation of Mediterranean ecosystems has been explained by the decoupling between N inputs and plant uptake during the dormant season. In central Chile, soils have often been considered N-rich in comparison to other Mediterranean ecosystems of the world, yet the impacts of expected intensification of seasonal drought remain unknown.
View Article and Find Full Text PDFBackground And Aims: Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile.
View Article and Find Full Text PDFClimate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns.
View Article and Find Full Text PDFDifferences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods.
View Article and Find Full Text PDFIncreased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S).
View Article and Find Full Text PDFLong-term studies of plant-pollinator interactions are almost nonexistent in the scientific literature. The objective of the present study was to determine changes and trends in the pollinator assemblage of ulmo (Eucryphia cordifolia; Cunoniaceae), a canopy-emergent tree found in Chilean temperate rainforests. We assessed the temporal variability of the pollinator assemblage and identified possible modulators of the observed temporal shifts.
View Article and Find Full Text PDFFeedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g.
View Article and Find Full Text PDFThe study of functional traits and physiological mechanisms determining species' drought tolerance is important for the prediction of their responses to climatic change. Fog-dependent forest patches in semiarid regions are a good study system with which to gain an understanding of species' responses to increasing aridity and patch fragmentation. Here we measured leaf and hydraulic traits for three dominant species with contrasting distributions within patches in relict, fog-dependent forests in semiarid Chile.
View Article and Find Full Text PDFExtreme climatic events represent disturbances that change the availability of resources. We studied their effects on annual plant assemblages in a semi-arid ecosystem in north-central Chile. We analysed 130 years of precipitation data using generalised extreme-value distribution to determine extreme events, and multivariate techniques to analyse 20 years of plant cover data of 34 native and 11 exotic species.
View Article and Find Full Text PDFCarbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert.
View Article and Find Full Text PDFPremise Of The Study: We screened 10 microsatellite loci for the dioecious, rainforest tree Aextoxicon punctatum, a species belonging to a monotypic family and genus, endemic to southwestern South America (30-43°S).
Methods And Results: Polymorphisms were evaluated in 108 adult trees from four populations, including the northern and southern extremes of the geographic range of Aextoxicon in Chile. All 10 microsatellites revealed polymorphic variation.
The co-occurrence of elaborate flowers visited by specific groups of pollinators and capacity for autonomous selfing in the same plant species has puzzled evolutionary biologists since the time of Charles Darwin. To examine whether autonomous selfing and floral specialization evolved in association, we quantified the autofertility level (AFI) in nine Schizanthus species characterized by a wide range of pollination specialization, revealing AFI values of 0.02 to complete selfing.
View Article and Find Full Text PDFThis study characterizes the structure of a plant-pollinator network in a temperate rain forest of Chiloé Island, southern Chile, where woody species are strongly dependent on biotic pollinators, and analyzes its robustness to the loss of participating species. Degree distribution, nestedness, and expected species persistence were evaluated. In addition, we assessed the roles of predefined subsets of plants (classified by life forms) and pollinators (grouped by taxonomic orders) in the network's structure and dynamics.
View Article and Find Full Text PDFThe landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant-animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30 degrees S), where the effects of the surrounding semiarid matrix and forest patch size (0.
View Article and Find Full Text PDFCarbon-based secondary compounds (CBSCs), such as phenols or tannins, have been considered as one of the most important and general chemical barriers of woody plants against a diverse array of herbivores. Herbivory has been described as a critical factor affecting the growth and survival of newly established tree seedlings or juveniles then, the presence of secondary metabolites as defences against herbivores should be a primary strategy to reduce foliar damage. We examined whether light-induced changes in leaf phenolic chemistry affected insect herbivory on seedlings of two rainforest tree species, Drimys winteri (Winteraceae) and Gevuina avellana (Proteaceae).
View Article and Find Full Text PDFVast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2-130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems.
View Article and Find Full Text PDF