Publications by authors named "Juan Ignacio Vilchez"

During 2022, intense heat waves, together with particularly extreme dry conditions, created a propitious scenario for wildfires, resulting in the area of vegetation consumed in Europe doubling. Mediterranean countries have been particularly affected, reaching 293,155 hectares in Spain, the worst data in the last 15 years. The effects on the vegetation and the soil are devastating, so knowing the recovery factors is essential for after-fire management.

View Article and Find Full Text PDF

Agricultural production is being affected by increasingly harsh conditions caused by climate change. The vast majority of crops suffer growth and yield declines due to a lack of water or intense heat. Hence, commercial legume crops suffer intense losses of production (20-80%).

View Article and Find Full Text PDF
Article Synopsis
  • The current challenges in agriculture necessitate sustainable management solutions, leading to the rise of biofertilizers as an effective alternative for enhancing crop growth and stress resistance.
  • The use of beneficial microbial strains can influence plant metabolism, impacting processes such as cell wall formation and nutrient transport, thereby promoting better growth.
  • Recent research shows that the strain YC4-R4 successfully stimulates various metabolic pathways in plants, including the biosynthesis of lipids, cellulose, phenolics, and flavonoids, through both transcriptomic and biochemical methods.
View Article and Find Full Text PDF

Root microbiota is important for plant growth and fitness. Little is known about whether and how the assembly of root microbiota may be controlled by epigenetic regulation, which is crucial for gene transcription and genome stability. Here we show that dysfunction of the histone demethylase IBM1 (INCREASE IN BONSAI METHYLATION 1) in Arabidopsis thaliana substantially reshaped the root microbiota, with the majority of the significant amplicon sequence variants (ASVs) being decreased.

View Article and Find Full Text PDF

Droughts and high temperatures deeply affect crop production. The use of desiccation-tolerant (or xerotolerant) microorganisms able to protect plants from droughts represents a promising alternative. These xerotolerant microorganisms have previously been used to modulate plant responses and improve their tolerance to drought.

View Article and Find Full Text PDF

Desiccation-tolerant plants are able to survive for extended periods of time in the absence of water. The molecular understanding of the mechanisms used by these plants to resist droughts can be of great value for improving drought tolerance in crops. This understanding is especially relevant in an environment that tends to increase the number and intensity of droughts.

View Article and Find Full Text PDF

Based on a combination of next-generation sequencing and single-molecule sequencing, we obtained the whole-genome sequence of Bacillus megaterium strain TG1-E1, which is a highly salt-tolerant rhizobacterium that enhances plant tolerance to drought stress. The complete genome is estimated to be approximately 5.48 Mb containing a total of 5,858 predicted protein-coding DNA sequences.

View Article and Find Full Text PDF

Here, we report the complete genome sequence for strain YC4-R4, a highly salt-tolerant rhizobacterium that promotes growth in plants. The sequencing process was performed by combining pyrosequencing and single-molecule sequencing techniques. The complete genome is estimated to be approximately 5.

View Article and Find Full Text PDF

The complete genome sequence of strain TG1-6, which is a highly salt-tolerant rhizobacterium that enhances plant tolerance to drought stress, is reported here. The sequencing process was performed based on a combination of pyrosequencing and single-molecule sequencing. The complete genome is estimated to be approximately 5.

View Article and Find Full Text PDF

The genome sequence for Microbacterium sp. strain 3J1, a desiccation-tolerant organism isolated from the Nerium oleander rhizosphere, is reported here. The genome is estimated to be approximately 3.

View Article and Find Full Text PDF

Arthrobacter koreensis 5J12A is a desiccation-tolerant organism isolated from the Nerium oleander rhizosphere. Here, we report its genome sequence, which may shed light on its role in plant growth promotion. This is believed to be the first published genome of a desiccation-tolerant plant growth promoter from the genus Arthrobacter.

View Article and Find Full Text PDF

The genome sequence for Rhodococcus sp. 4J2A2, a newly described desiccation-tolerant strain that removes aromatic hydrocarbons, is reported here. The genome is estimated to be around 7.

View Article and Find Full Text PDF