Pulmonary ionocytes are a newly discovered airway epithelial cell type proposed to be a major contributor to cystic fibrosis (CF) lung disease based on observations they express the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel at a higher level than any other cell type in the airway epithelia. Moreover, genetically manipulated experimental models that lack ionocytes develop NaCl transport abnormalities and airway surface liquid (ASL) dehydration consistent with CF. However, no direct evidence indicates ionocytes engage in NaCl transport or contribute to ASL formation, questioning the relevance of ionocytes to CF lung disease.
View Article and Find Full Text PDFSince the early seminal studies on epithelial solute transport, it has been understood that there must be crosstalk among different members of the transport machinery to coordinate their activity and, thus, generate localized electrochemical gradients that force solute flow in the required direction that would otherwise be thermodynamically unfavorable. However, mechanisms underlying intracellular crosstalk remain unclear. We present evidence that crosstalk between apical and basolateral membrane transporters is mediated by intracellular Ca signaling in insect renal epithelia.
View Article and Find Full Text PDFA controversial hypothesis pertaining to cystic fibrosis (CF) lung disease is that the CF transmembrane conductance regulator (CFTR) channel fails to inhibit the epithelial Na channel (ENaC), yielding increased Na reabsorption and airway dehydration. We use a non-invasive self-referencing Na-selective microelectrode technique to measure Na transport across individual folds of distal airway surface epithelium preparations from CFTR (CF) and wild-type (WT) swine. We show that, under unstimulated control conditions, WT and CF epithelia exhibit similar, low rates of Na transport that are unaffected by the ENaC blocker amiloride.
View Article and Find Full Text PDFRhodnius prolixus is a blood-feeding insect vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. During each blood meal, the animals ingest large volumes of blood, that may be up to 12 times the unfed body mass. These blood meals impose a significant osmotic stress for the animals due to the hyposmotic condition of the ingested blood compared with the insect's hemolymph.
View Article and Find Full Text PDFThoracic dorsal root ganglia (tDRG) contribute to fluid secretion in the upper airways. Inflammation potentiates DRG responses, but the mechanisms remain under investigation. The receptor for advanced glycation end-products (RAGE) underlies potentiation of DRG responses in pain pathologies; however, its role in other sensory modalities is less understood.
View Article and Find Full Text PDFThe airway mucosal microenvironment is crucial for host defense against inhaled pathogens but remains poorly understood. We report here that the airway surface normally undergoes surprisingly large excursions in pH during breathing that can reach pH 9.0 during inhalation, making it the most alkaline fluid in the body.
View Article and Find Full Text PDFThe human airway is protected by an efficient innate defense mechanism that requires healthy secretion of airway surface liquid (ASL) to clear pathogens from the lungs. Most of the ASL in the upper airway is secreted by submucosal glands. In cystic fibrosis (CF), the function of airway submucosal glands is abnormal, and these abnormalities are attributed to anomalies in ion transport across the epithelia lining the different sections of the glands that function coordinately to produce the ASL.
View Article and Find Full Text PDFGiven that hematophagous insects ingest large quantities of blood in a single meal, they must undergo a rapid post-prandial diuresis in order to maintain homeostasis. In the kissing bug (Hemiptera: Reduviidae), the coordinated activity of the Malpighian tubules and anterior midgut maintains water and ion balance during the post-prandial diuresis. Three to four hours after the meal, the diuretic process finishes, and the animal enters an antidiuretic state to ensure water conservation until the next blood intake.
View Article and Find Full Text PDFInhaled hypertonic saline (HTS) treatment is used to improve lung health in patients with cystic fibrosis (CF). The current consensus is that the treatment generates an osmotic gradient that draws water into the airways and increases airway surface liquid (ASL) volume. However, there is evidence that HTS may also stimulate active secretion of ASL by airway epithelia through the activation of sensory neurons.
View Article and Find Full Text PDFDiabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood.
View Article and Find Full Text PDFBlood-sucking insects experience thermal stress at each feeding event on endothermic vertebrates. We used thermography to examine how kissing-bugs actively protect themselves from overheating. During feeding, these bugs sequester and dissipate the excess heat in their heads while maintaining an abdominal temperature close to ambient.
View Article and Find Full Text PDFCystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel, which can result in chronic lung disease. The sequence of events leading to lung disease is not fully understood but recent data show that the critical pathogenic event is the loss of the ability to clear bacteria due to abnormal airway surface liquid secretion (ASL). However, whether the inhalation of bacteria triggers ASL secretion and whether this is abnormal in cystic fibrosis has never been tested.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2014
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease. Recent data show that the initial consequence of CFTR mutation is the failure to eradicate bacteria before the development of inflammation and airway remodeling.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2014
Rhodnius prolixus is a hematophagous insect vector of Chagas disease capable of ingesting up to 10 times its unfed body weight in blood in a single meal. The excess water and ions ingested with the meal are expelled through a rapid postprandial diuresis driven by the Malpighian tubules. Diuresis is triggered by at least two diuretic hormones, a CRF-related peptide and serotonin, which were traditionally believed to trigger cAMP as an intracellular second messenger.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2012
The airway is kept sterile by an efficient innate defense mechanism. The cornerstone of airway defense is mucus containing diverse antimicrobial factors that kill or inactivate pathogens. Most of the mucus in the upper airways is secreted by airway submucosal glands.
View Article and Find Full Text PDFMethods Mol Biol
September 2011
Human airways are kept sterile by a mucosal innate defense system that includes mucus secretion. Mucus is secreted in healthy upper airways primarily by submucosal glands and consists of defense molecules mixed with mucins, electrolytes, and water and is also a major component of sputum. Mucus traps pathogens and mechanically removes them via mucociliary clearance while inhibiting their growth via molecular (e.
View Article and Find Full Text PDFThe ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2010
Osmotic balance in insects is regulated by the excretory system, consisting of Malpighian tubules and the gut under the control of diuretic and antidiuretic factors. Terrestrial insects must conserve water, and antidiuresis is the norm, only interrupted by brief diuretic periods. Surprisingly, little is known about antidiuresis in insects.
View Article and Find Full Text PDFProbing of a host and ingestion of a blood-meal in a fifth instar Rhodnius prolixus results in a cascade of tightly integrated events, including salivary gland secretion, plasticization of the abdominal cuticle, increased ion and water movement across the anterior midgut (crop) and Malpighian tubules (which rapidly produce urine) and the regular expulsion of urine from the hindgut. In this study we have focussed on the role of the anterior midgut during the rapid postprandial diuresis. The huge blood-meal is pumped into the anterior midgut, during feeding, then modified by diuresis and stored until it is digested.
View Article and Find Full Text PDFThe mucosa of the proximal airways defends itself and the lower airways from inhaled irritants such as capsaicinoids, allergens, and infections by several mechanisms. Sensory nerves monitor the luminal microenvironment and release the tachykinin substance P (SP) to stimulate mucus secretion. Here, we have studied the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in SP stimulation by comparing mouse airway submucosal gland responses in wild-type (WT) and CFTR-/- mice.
View Article and Find Full Text PDFCystic fibrosis (CF) is caused by dysfunction of the CF transmembrane conductance regulator (CFTR), an anion channel whose dysfunction leads to chronic bacterial and fungal airway infections via a pathophysiological cascade that is incompletely understood. Airway glands, which produce most airway mucus, do so in response to both acetylcholine (ACh) and vasoactive intestinal peptide (VIP). CF glands fail to secrete mucus in response to VIP, but do so in response to ACh.
View Article and Find Full Text PDFSubmucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas.
View Article and Find Full Text PDFThe effects of changes in the salinity of the rearing medium on Malpighian tubule fluid secretion and ion transport were examined in larvae of the freshwater mosquito Aedes aegypti and the saltwater species Ochlerotatus taeniorhynchus. For unstimulated tubules of both species, the K(+) concentration of secreted fluid was significantly lower when larvae were reared in 30% or 100% seawater (O. taeniorhynchus only), relative to tubules from freshwater-reared larvae.
View Article and Find Full Text PDFMeasurements of intracellular and luminal ion activities as well as membrane potential were used to calculate electrochemical gradients for Cl-, Na+, K+ and H+ across the apical membrane during fluid secretion by Malpighian tubules of Rhodnius prolixus. The results show that the contribution of Na+/H+ and/or K+/H+ exchangers to fluid secretion is feasible both in unstimulated and serotonin-stimulated tubules. Similarly, the electrochemical potential for Cl- is consistent with the passive movement of Cl- from cell to lumen through Cl- channels.
View Article and Find Full Text PDFWe examined the effects of bathing saline Na+/K+ ratio, bumetanide and hydrochlorothiazide on fluid and ion transport by serotonin-stimulated Malpighian tubules of Rhodnius prolixus. Previous pharmacological and electrophysiological studies indicate that a bumetanide-sensitive Na+/K+/2Cl- cotransporter is the primary route for basolateral ion entry into the cell during fluid secretion. The goal of this study was to resolve the apparent conflict between relatively high secretion rates by tubules bathed in K+-free saline and the evidence that Na+/K+/2Cl- cotransporters described in other systems have an absolute requirement for all three ions for translocation.
View Article and Find Full Text PDF