Cysteine is a semi-essential amino acid that not only plays an essential role as a component of protein synthesis, but also in the generation of numerous sulfur-containing molecules such as the antioxidant glutathione and coenzyme A. We previously showed that the metabolism of cysteine is dysregulated in Huntington's disease (HD), a neurodegenerative disorder triggered by the expansion of polyglutamine repeats in the protein huntingtin. In this study, we showed that cysteine metabolism is compromised at multiple levels in HD, both transcriptional and post-translational.
View Article and Find Full Text PDFAlzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD.
View Article and Find Full Text PDFBilirubin is one of the most frequently measured metabolites in medicine, yet its physiologic roles remain unclear. Bilirubin can act as an antioxidant in vitro, but whether its redox activity is physiologically relevant is unclear because many other antioxidants are far more abundant in vivo. Here, we report that depleting endogenous bilirubin renders mice hypersensitive to oxidative stress.
View Article and Find Full Text PDFThe transsulfuration pathway is a metabolic pathway where transfer of sulfur from homocysteine to cysteine occurs. The pathway leads to the generation of several sulfur metabolites, which include cysteine, GSH and the gaseous signalling molecule hydrogen sulfide (H S). Precise control of this pathway is critical for maintenance of optimal cellular function and, therefore, the key enzymes of the pathway, cystathionine β-synthase and cystathionine γ-lyase, are regulated at multiple levels.
View Article and Find Full Text PDFAntioxid Redox Signal
April 2019
Significance: Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress.
View Article and Find Full Text PDFBesides its essential role in protein synthesis, cysteine plays vital roles in redox homeostasis, being a component of the major antioxidant glutathione (GSH) and a potent antioxidant by itself. In addition, cysteine undergoes a variety of post-translational modifications that modulate several physiological processes. It is becoming increasingly clear that redox-modulated events play important roles not only in peripheral tissues but also in the brain where cysteine disposition is central to these pathways.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2018
Golgi stress response is emerging as a physiologic process of comparable importance to endoplasmic reticulum (ER) and mitochondrial stress responses. However, unlike ER stress, the identity of the signal transduction pathway involved in the Golgi stress response has been elusive. We show that the Golgi stressor monensin acts via the PKR-like ER kinase/Activating Transcription Factor 4 pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Disturbances in amino acid metabolism, which have been observed in Huntington's disease (HD), may account for the profound inanition of HD patients. HD is triggered by an expansion of polyglutamine repeats in the protein huntingtin (Htt), impacting diverse cellular processes, ranging from transcriptional regulation to cognitive and motor functions. We show here that the master regulator of amino acid homeostasis, activating transcription factor 4 (ATF4), is dysfunctional in HD because of oxidative stress contributed by aberrant cysteine biosynthesis and transport.
View Article and Find Full Text PDFp53 has been implicated in the pathophysiology of Huntington's disease (HD). Nonetheless, the molecular mechanism of how p53 may play a unique role in the pathology remains elusive. To address this question at the molecular and cellular biology levels, we initially screened differentially expressed molecules specifically dependent on p53 in a HD animal model.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2015
Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine repeat expansion in mutant huntingtin (mHtt). Despite the known genetic cause of HD, the pathophysiology of this disease remains to be elucidated. Inositol polyphosphate multikinase (IPMK) is an enzyme that displays soluble inositol phosphate kinase activity, lipid kinase activity, and various noncatalytic interactions.
View Article and Find Full Text PDFHuntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal-dominant neurodegenerative disease caused by the expansion of polyglutamine repeats in the gene for huntingtin (Htt). In HD, the corpus striatum selectively degenerates despite the uniform expression of mutant huntingtin (mHtt) throughout the brain and body. Striatal selectivity reflects the binding of the striatal-selective protein Rhes to mHtt to augment cytotoxicity, but molecular mechanisms underlying the toxicity have been elusive.
View Article and Find Full Text PDFGolgin-160 is ubiquitously expressed in vertebrates. It localizes to the cytoplasmic side of the Golgi and has a large C-terminal coiled-coil domain. The noncoiled-coil N-terminal head domain contains Golgi targeting information, a cryptic nuclear localization signal, and three caspase cleavage sites.
View Article and Find Full Text PDFThe glucose transporter GLUT4 and the aminopeptidase IRAP (insulin-responsive aminopeptidase) are the major cargo proteins of GSVs (GLUT4 storage vesicles) in adipocytes and myocytes. In the basal state, most GSVs are sequestered in perinuclear and other cytosolic compartments. Following insulin stimulation, GSVs undergo exocytic translocation to insert GLUT4 and IRAP into the plasma membrane.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2006
The assembly and function of mitotic spindles require poly(ADP-ribosyl)ation of spindle components by tankyrase, a poly(ADP-ribose) polymerase that aggregates to spindle poles during mitosis. Tankyrase itself is phosphorylated during mitosis, but the kinases involved remain undefined. Herein we report that mitotic phosphorylation of tankyrase is abrogated in cells treated with the GSK3 inhibitors LiCl and indirubin.
View Article and Find Full Text PDFGolgin-160, a ubiquitous protein in vertebrates, localizes to the cytoplasmic face of the Golgi complex. Golgin-160 has a large coiled-coil C-terminal domain and a non-coiled-coil N-terminal ("head") domain. The head domain contains important motifs, including a nuclear localization signal, a Golgi targeting domain, and three aspartates that are recognized by caspases during apoptosis.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerases or PARPs are a family of NAD(+)-dependent enzymes that modify themselves and other substrate proteins with ADP-ribose polymers. The founding member PARP 1 is localized predominantly in the nucleus and is activated by binding to DNA lesions. Excessive PARP 1 activation following genotoxin treatment causes NAD(+) depletion and cell death, whereas pharmacological PARP 1 inhibition protects cells from genotoxicity.
View Article and Find Full Text PDFLipid infusion and high fat feeding are established causes of systemic and adipose tissue insulin resistance. In this study, we treated 3T3-L1 adipocytes with a mixture of free fatty acids (FFAs) to investigate the molecular mechanisms underlying fat-induced insulin resistance. FFA treatment impaired insulin receptor-mediated signal transduction and decreased insulin-stimulated GLUT4 translocation and glucose transport.
View Article and Find Full Text PDFTankyrase (TNKS) is a telomere-associated poly-ADP ribose polymerase (PARP) that has been implicated along with several telomere repeat binding factors in the regulation of Epstein-Barr virus origin of plasmid replication (OriP). We now show that TNKS1 can bind to the family of repeats (FR) and dyad symmetry regions of OriP by using a chromatin immunoprecipitation assay and DNA affinity purification. TNKS1 and TNKS2 bound to EBNA1 in coimmunoprecipitation experiments with transfected cell lysates and with purified recombinant proteins in vitro.
View Article and Find Full Text PDFTankyrase-1 and -2 are closely related poly(ADP-ribose) polymerases that use an ankyrin-repeat domain to bind diverse proteins, including TRF (telomere-repeat binding factor)-1, IRAP (insulin-responsive aminopeptidase), and TAB182 (182-kDa tankyrase-binding protein). TRF1 binding allows tankyrase to regulate telomere dynamics in human cells, whereas IRAP binding presumably allows tankyrase to regulate the targeting of IRAP. The mechanism by which tankyrase binds to diverse proteins has not been investigated.
View Article and Find Full Text PDFThe poly(ADP-ribose) polymerase (PARP) tankyrase-1 contains an ankyrin-repeat domain that binds to various partners, including the telomeric protein TRF1 (telomere-repeat-binding factor 1) and the vesicular protein IRAP (insulin-responsive aminopeptidase). TRF1 binding recruits tankyrase-1 to telomeres and allows its PARP activity to regulate telomere homoeostasis. By contrast, IRAP binding and the Golgi co-localization of tankyrase-1 with IRAP might allow tankyrase-1 to affect the targeting of IRAP-containing vesicles.
View Article and Find Full Text PDF