X-ray absorption spectroscopy (XAS) is a powerful technique that provides information about the electronic and local geometric structural properties of newly developed electrocatalysts, especially when it is performed under operating conditions (i.e., ).
View Article and Find Full Text PDFOver the past decades, the electrochemical CO-reduction reaction (CORR) has emerged as a promising option for facilitating intermittent energy storage while generating industrial raw materials of economic relevance such as CO. Recent studies have reported that Au-Cu bimetallic nanocatalysts feature a superior CO-to-CO conversion as compared with the monometallic components, thus improving the noble metal utilization. Under this premise and with the added advantage of a suppressed H-evolution reaction due to absence of a carbon support, herein, we employ bimetallic AuCu and AuCu aerogels (with a web thickness ≈7 nm) as CO-reduction electrocatalysts in 0.
View Article and Find Full Text PDFThe complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions.
View Article and Find Full Text PDFNon-noble metal catalysts (NNMCs) hold the potential to replace the expensive Pt-based materials currently used to speed up the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes, but they feature poor durability that inhibits their implementation in commercial PEMFCs. This performance decay is commonly ascribed to the operative demetallation of their ORR-active sites, the electro-oxidation of the carbonaceous matrix that hosts these active centers, and/or the chemical degradation of the ionomer, active sites, and/or carbon support by radicals derived from the HO produced as an ORR by-product. However, little is known regarding the relative contributions of these mechanisms to the overall PEMFC performance loss.
View Article and Find Full Text PDFIn recent years, operando/in situ X-ray absorption spectroscopy (XAS) has become an important tool in the electrocatalysis community. However, the high catalyst loadings often required to acquire XA-spectra with a satisfactory signal-to-noise ratio frequently imply the use of thick catalyst layers (CLs) with large ion- and mass-transport limitations. To shed light on the impact of this variable on the spectro-electrochemical results, in this study we investigate Pd-hydride formation in carbon-supported Pd-nanoparticles (Pd/C) and an unsupported Pd-aerogel with similar Pd surface areas but drastically different morphologies and electrode packing densities.
View Article and Find Full Text PDFConspectusMetal aerogels assembled from nanoparticles have captured grand attention because they combine the virtues of metals and aerogels and are regarded as ideal materials to address current environmental and energy issues. Among these aerogels, those composed of two metals not only display combinations (superpositions) of the properties of their individual metal components but also feature novel properties distinctly different from those of their monometallic relatives. Therefore, quite some effort has been invested in refining the synthetic methods, compositions, and structures of such bimetallic aerogels as to boost their performance for the envisaged application(s).
View Article and Find Full Text PDFSynthesizing metal nanoparticles with fine control of size, shape and surface properties is of high interest for applications such as catalysis, nanoplasmonics, and fuel cells. In this contribution, we demonstrate that the citrate-coated surfaces of palladium (Pd) and platinum (Pt)@Pd nanocubes with a lateral length <5 nm and low polydispersity in shape achieve superior catalytic properties. The synthesis achieves great control of the nanoparticle's physico-chemical properties by using only biogenic reagents and bromide ions in water while being fast, easy to perform and scalable.
View Article and Find Full Text PDFThe efficient scale-up of CO-reduction technologies is a pivotal step to facilitate intermittent energy storage and for closing the carbon cycle. However, there is a need to minimize the occurrence of undesirable side reactions like H evolution and achieve selective production of value-added CO-reduction products (CO and HCOO) at as-high-as-possible current densities. Employing novel electrocatalysts such as unsupported metal aerogels, which possess a highly porous three-dimensional nanostructure, offers a plausible approach to realize this.
View Article and Find Full Text PDFPt-group metal (PGM)-free catalysts of the Me-N-C type based on abundant and inexpensive elements have gained importance in the field of oxygen reduction reaction (ORR) electrocatalysis due to their promising ORR-activities. Their insufficient stability, however, has fueled the interest in obtaining an in-depth understanding of their composition, which requires highly sensitive techniques compatible with their low metal contents (typically <5 wt%). In the particular context of iron-based materials, 57Fe-Mössbauer spectroscopy is often used to provide such compositional information, but requires (partially) 57Fe-enriched precursors.
View Article and Find Full Text PDFThe electroreduction of carbon dioxide is considered a key reaction for the valorization of CO emitted in industrial processes or even present in the environment. Cobalt-nitrogen co-doped carbon materials featuring atomically dispersed Co-N sites have been shown to display superior activities and selectivities for the reduction of carbon dioxide to CO, which, in combination with H (i.e.
View Article and Find Full Text PDFThe commercial success of the electrochemical energy conversion technologies required for the decarbonization of the energy sector requires the replacement of the noble metal-based electrocatalysts currently used in (co-)electrolyzers and fuel cells with inexpensive, platinum-group metal-free analogs. Among these, Fe/N/C-type catalysts display promising performances for the reduction of O or CO , but their insufficient activity and stability jeopardize their implementation in such devices. To circumvent these issues, a better understanding of the local geometric and electronic structure of their catalytic active sites under reaction conditions is needed.
View Article and Find Full Text PDFBackground: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases.
View Article and Find Full Text PDFThe encouraging selectivity of copper oxides for the electroreduction of CO into ethylene and alcohols has led to a vivid debate on the possible relation between their operando (sub-)surface oxidation state (i. e. fully reduced or partially oxidized) and this distinct reactivity.
View Article and Find Full Text PDFTuning the surface structure at the atomic level is of primary importance to simultaneously meet the electrocatalytic performance and stability criteria required for the development of low-temperature proton-exchange membrane fuel cells (PEMFCs). However, transposing the knowledge acquired on extended, model surfaces to practical nanomaterials remains highly challenging. Here, we propose 'surface distortion' as a novel structural descriptor, which is able to reconciliate and unify seemingly opposing notions and contradictory experimental observations in regards to the electrocatalytic oxygen reduction reaction (ORR) reactivity.
View Article and Find Full Text PDFHighly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes.
View Article and Find Full Text PDFWe present recent developments in top-down nanofabrication that have found application in catalysis research. To unravel the complexity of catalytic systems, the design and use of models with control of size, morphology, shape and inter-particle distances is a necessity. The study of well-defined and ordered nanoparticles on a support contributes to the understanding of complex phenomena that govern reactions in heterogeneous and electro-catalysis.
View Article and Find Full Text PDFThe electrochemical reduction of CO(2) has been extensively studied over the past decades. Nevertheless, this topic has been tackled so far only by using a very fundamental approach and mostly by trying to improve kinetics and selectivities toward specific products in half-cell configurations and liquid-based electrolytes. The main drawback of this approach is that, due to the low solubility of CO(2) in water, the maximum CO(2) reduction current which could be drawn falls in the range of 0.
View Article and Find Full Text PDFFe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by (57)Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH(3) at 950 °C.
View Article and Find Full Text PDFBinuclear rhenium(I) complexes with 1,2-bis(4,4'-methyl-[2,2']bipyridyl)-ethane and 1,2-bis(4,4'-methyl-[2,2']bipyridyl)-dodecane as bridging ligands and their mononuclear analogues have been synthesized and characterized by their spectroscopic and electrochemical properties. First reduction potentials and luminescence properties as well as the reductive quenching of the emissive state with TEOA were not affected by the alkyl linker. By means of a detailed comparison of the photocatalytic CO(2) reductions of the monometallic and the bimetallic complexes a great beneficial effect on the activity depending on the proximity of the centres was found.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2011
The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH is mostly imparted by acid-resistant FeN-sites whose turnover frequency for the O reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions.
View Article and Find Full Text PDFH(2)-air polymer-electrolyte-membrane fuel cells are electrochemical power generators with potential vehicle propulsion applications. To help reduce their cost and encourage widespread use, research has focused on replacing the expensive Pt-based electrocatalysts in polymer-electrolyte-membrane fuel cells with a lower-cost alternative. Fe-based cathode catalysts are promising contenders, but their power density has been low compared with Pt-based cathodes, largely due to poor mass-transport properties.
View Article and Find Full Text PDFNine non-noble-metal catalysts (NNMCs) from five different laboratories were investigated for the catalysis of O(2) electroreduction in an acidic medium. The catalyst precursors were synthesized by wet impregnation, planetary ball milling, a foaming-agent technique, or a templating method. All catalyst precursors were subjected to one or more heat treatments at 700-1050 degrees C in an inert or reactive atmosphere.
View Article and Find Full Text PDF