The repair of soft tissues with anisotropic structures, such as spinal dura mater, requires the use of biomaterials to guide tissue directional growth while minimizing epidural fibrotic adhesion. Herein, we construct the Janus small intestinal submucosa (SIS) via silk-based hydrogel coatings, which provides extracellular matrix-mimicking features and anti-adhesion performance for spinal dural defect repair. We demonstrate that the silk fibroin and methacrylated silk fibroin (SilMA) composite microgroove hydrogel coating at the inner surface via water vapor annealing treatment exhibits excellent structure stability, stable attachment to SIS substrate, and shows orientated cell morphology and extracellular matrix produced by fibroblasts, good histocompatibility and promotes the polarization of macrophages towards the anti-inflammatory phenotype.
View Article and Find Full Text PDFSelf-assembly plays a critical role in nanoparticle-based applications. However, it remains challenging to monitor the self-assembly of multi-component nanomaterials at a single-particle level, in real-time, with high throughput, and in a model-independent manner. Here, multi-color fluorescence microscopy is applied to track the assembly of both liposomes and mRNA simultaneously in clinical mRNA-based cancer immunotherapy.
View Article and Find Full Text PDFThrough millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions.
View Article and Find Full Text PDFThe design of biomaterials that can reconfigure on-demand in response to external stimuli is an emerging area in materials research. However, achieving reversible assembly of protein-based biomaterials by light input remains a major challenge. Here, we present the engineering of a new protein material that is capable of switching between liquid and solid state reversibly, controlled by lights of different wavelengths.
View Article and Find Full Text PDFActa Pharm Sin B
November 2024
The different fate of liposomes among species has been discovered and mentioned in many studies, but the underlying mechanisms have not been explored. In the present work, we concentrated on the fate of PEGylated liposomes (sLip) in three commonly used species (mice, rats, and dogs). It was exhibited that the accelerated blood clearance (ABC) phenomenon and hypersensitivity in large animals (beagle dogs) were much more significant than that in rodents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
In recent years, there have been advancements in high-performance soft sensors with simultaneous moderate sensitivity and wide linearity. However, it remains challenging to combine high-efficiency production and high performance for soft sensors. The skin and hair structure provide an elegantly simple sensing model, where hair acts as signal receptors and basal skin acts as signal processors.
View Article and Find Full Text PDFDrug resistance remains a challenge for targeted therapy of cancers driven by EML4-ALK and related fusion oncogenes. EML4-ALK forms cytoplasmic protein condensates, which result from networks of interactions between oncogene and adapter protein multimers. While these assemblies are associated with oncogenic signaling, their role in drug response is unclear.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
September 2024
Objective: To develop a biodegradable implantable bone material with compatible mechanics with the bone tissue, providing a new biomaterial for clinical bone repair and regeneration.
Methods: Silk reinforced polycaprolactone composites (SPC) containing 20%, 40%, and 60% silk were prepared by layer-by-layer assembly and hot-pressing technology. Macroscopic morphology was observed and microstructure were observed by scanning electron microscopy, compressive mechanical properties were detected by compression test, surface wettability was detected by surface contact angle test, degradation of materials was observed after soaking in PBS for 180 days, and proliferation of MC3T3-E1 cells was detected by cell counting kit 8 assay.
Signal Transduct Target Ther
June 2024
This study aimed to develop a pan-genotypic and multifunctional small interfering RNA (siRNA) against hepatitis B virus (HBV) with an efficient delivery system for treating chronic hepatitis B (CHB), and explore combined RNA interference (RNAi) and immune modulatory modalities for better viral control. Twenty synthetic siRNAs targeting consensus motifs distributed across the whole HBV genome were designed and evaluated. The lipid nanoparticle (LNP) formulation was optimized by adopting HO-PEG-DMG lipid and modifying the molar ratio of traditional polyethylene glycol (PEG) lipid in LNP prescriptions.
View Article and Find Full Text PDFThe regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration.
View Article and Find Full Text PDFTargeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Proactively programming materials toward target nonlinear mechanical behaviors is crucial to realize customizable functions for advanced devices and systems, which arouses persistent explorations for rapid and efficient inverse design strategies. Herein, we propose a "mechanical Fourier transform" strategy to program mechanical behaviors of materials by mimicking the concept of Fourier transform. In this strategy, an arbitrary target force-displacement curve is decomposed into multiple cosine curves and a constant curve, each of which is realized by a rationally designed multistable module in an array-structured metamaterial.
View Article and Find Full Text PDFThe controllable preparation of efficient non-crystalline solid solution catalysts is a great challenge in the catalytic oxidation of volatile organic compounds. In this work, series non-crystalline solid solution structured Ce-Mn co-oxide nanofibers were creatively prepared by adjusting Ce/Mn molar ratios using electrospinning. 0.
View Article and Find Full Text PDFBiomechanical forces are of fundamental importance in biology, diseases, and medicine. Mechanobiology is an emerging interdisciplinary field that studies how biological mechanisms are regulated by biomechanical forces and how physical principles can be leveraged to innovate new therapeutic strategies. This article reviews state-of-the-art mechanobiology knowledge about the yes-associated protein (YAP), a key mechanosensitive protein, and its roles in the development of drug resistance in human cancer.
View Article and Find Full Text PDFMessenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA).
View Article and Find Full Text PDFHigh-performance, fast-growing natural materials with sustainable and functional features currently arouse significant attention. Here, facile processing, involving delignification, in situ hydrothermal synthesis of TiO and pressure densification, is employed to transform natural bamboo into a high-performance structural material. The resulting TiO-decorated densified bamboo exhibits high flexural strength and elastic stiffness, with both properties more than double that of natural bamboo.
View Article and Find Full Text PDFNatural fiber-reinforced biocomposites with excellent mechanical and biological properties have attractive prospects for internal medical devices. However, poor interfacial adhesion between natural silk fiber and the polymer matrix has been a disturbing issue for such applications. Herein, rigid-flexible agents, such as polydopamine (PDA) and epoxy soybean oil (ESO), were introduced to enhance the interfacial adhesion between () silk and a common medical polymer, polycaprolactone (PCL).
View Article and Find Full Text PDFArtificial bone materials are of high demand due to the frequent occurrence of bone damage from trauma, disease, and ageing. Three-dimensional (3D) printing can tailor-make structures and implants based on biomaterial inks, rendering personalized bone medicine possible. Herein, we extrusion-printed 3D silk fibroin (SF) scaffolds using mixed inks from SF and sodium alginate (SA), and post-mineralized various calcium phosphates to make hybrid SF scaffolds.
View Article and Find Full Text PDF