Publications by authors named "Juan Gabriel Avina-Cervantes"

Microgrids (MGs) based on renewable energies have emerged as a proficient strategy for tackling power quality issues in conventional distribution networks. Nonetheless, MG systems require a suitable control scheme to supply energy optimally towards the electrical grid. This paper presents an innovative framework for designing hybrid Proportional-Resonant (PR) controllers with Linear Quadratic Regulators (LQR), PR+LQR, which merge relevant properties of PR and LQR controllers.

View Article and Find Full Text PDF

Nowadays, Brain-Computer Interfaces (BCIs) still captivate large interest because of multiple advantages offered in numerous domains, explicitly assisting people with motor disabilities in communicating with the surrounding environment. However, challenges of portability, instantaneous processing time, and accurate data processing remain for numerous BCI system setups. This work implements an embedded multi-tasks classifier based on motor imagery using the EEGNet network integrated into the NVIDIA Jetson TX2 card.

View Article and Find Full Text PDF

Background And Objective: Automatic detection of stenosis on X-ray Coronary Angiography (XCA) images may help diagnose early coronary artery disease. Stenosis is manifested by a buildup of plaque in the arteries, decreasing the blood flow to the heart, increasing the risk of a heart attack. Convolutional Neural Networks (CNNs) have been successfully applied to identify pathological, regular, and featured tissues on rich and diverse medical image datasets.

View Article and Find Full Text PDF
Article Synopsis
  • Intraoperative ultrasound (iUS) combined with navigation systems and preoperative MRI helps surgeons accurately identify tumor margins during surgery.
  • Two different segmentation methods, a semi-automatic technique and two registration-based methods, were tested to extract brain tumors from 3D-iUS data.
  • The semi-automatic method outperformed the other techniques, especially for detecting metastasis, achieving higher similarity indices and lower contour mean distances in the results.
View Article and Find Full Text PDF

Despite the increasing use of technology, handwriting has remained to date as an efficient means of communication. Certainly, handwriting is a critical motor skill for childrens cognitive development and academic success. This article presents a new methodology based on electromyographic signals to recognize multi-user free-style multi-stroke handwriting characters.

View Article and Find Full Text PDF

Purpose: Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility.

View Article and Find Full Text PDF

Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM).

View Article and Find Full Text PDF

Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (DE) is proposed.

View Article and Find Full Text PDF

This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function.

View Article and Find Full Text PDF

This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area ( ) under the receiver operating characteristic curve is used as fitness function.

View Article and Find Full Text PDF

In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels.

View Article and Find Full Text PDF