With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents.
View Article and Find Full Text PDFBackground: Chagas disease is endemic in the rural areas of southern Peru and a growing urban problem in the regional capital of Arequipa, population ∼860,000. It is unclear how to implement cost-effective screening programs across a large urban and periurban environment.
Methods: We compared four alternative screening strategies in 18 periurban communities, testing individuals in houses with 1) infected vectors; 2) high vector densities; 3) low vector densities; and 4) no vectors.
Vector-borne transmission of Chagas disease has become an urban problem in the city of Arequipa, Peru, yet the debilitating symptoms that can occur in the chronic stage of the disease are rarely seen in hospitals in the city. The lack of obvious clinical disease in Arequipa has led to speculation that the local strain of the etiologic agent, Trypanosoma cruzi, has low chronic pathogenicity. The long asymptomatic period of Chagas disease leads us to an alternative hypothesis for the absence of clinical cases in Arequipa: transmission in the city may be so recent that most infected individuals have yet to progress to late stage disease.
View Article and Find Full Text PDFBackground: The history of Chagas disease control in Peru and many other nations is marked by scattered and poorly documented vector control campaigns. The complexities of human migration and sporadic control campaigns complicate evaluation of the burden of Chagas disease and dynamics of Trypanosoma cruzi transmission.
Methodology/principal Findings: We conducted a cross-sectional serological and entomological study to evaluate temporal and spatial patterns of T.
Chagas disease affects an estimated 8 million people in Latin America. Infected individuals have 20-30% lifetime risk of developing cardiomyopathy, but more subtle changes in autonomic responses may be more frequent. We conducted a matched case-control study of children in Arequipa, Peru, where triatomine infestation and Trypanosoma cruzi infection are emerging problems.
View Article and Find Full Text PDFThe rational design of interventions is critical to controlling communicable diseases, especially in urban environments. In the case of the Chagas disease vector Triatoma infestans, successful control is stymied by the return of the insect after the effectiveness of the insecticide wanes. Here, we adapt a genetic algorithm, originally developed for the travelling salesman problem, to improve the spatio-temporal design of insecticide campaigns against T.
View Article and Find Full Text PDFBackground: Chagas disease is one of the most important neglected tropical diseases in the Americas. Vectorborne transmission of Chagas disease has been historically rare in urban settings. However, in marginal communities near the city of Arequipa, Peru, urban transmission cycles have become established.
View Article and Find Full Text PDFDiagnosis of Chagas disease is hindered by discordance between screening and confirmatory test results for Trypanosoma cruzi infection. In periurban Arequipa, Peru, spatial analysis revealed that individuals with discordant test results are spatially clustered in hotspots of T. cruzi transmission, suggesting that discordant results likely represent true infections in this setting.
View Article and Find Full Text PDFWe used sentinel animal enclosures to measure the rate of infestation by the Chagas disease vector, Triatoma infestans, in an urban community of Arequipa, Peru, and to evaluate the effect of deltamethrin-impregnated netting on that rate. Impregnated netting decreased the rate of infestation of sentinel enclosures (rate ratio, 0.23; 95% confidence interval, 0.
View Article and Find Full Text PDFBackground: Chagas disease, caused by Trypanosoma cruzi infection, is an urban problem in Arequipa, Peru, and the epidemiology of Chagas disease is likely to be quite different in this area, compared with in rural zones.
Methods: We conducted a serosurvey of 1615 children <18 years old in periurban districts that included hillside shantytowns and slightly more affluent low-lying communities. In addition, 639 adult residents of 1 shantytown were surveyed to provide data across the age spectrum for this community.
Background: Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T.
View Article and Find Full Text PDFIn Arequipa, Peru, vectorborne transmission of Chagas disease by Triatoma infestans has become an urban problem. We conducted an entomologic survey in a periurban community of Arequipa to identify risk factors for triatomine infestation and determinants of vector population densities. Of 374 households surveyed, triatomines were collected from 194 (52%), and Trypanosoma cruzi-carrying triatomines were collected from 72 (19.
View Article and Find Full Text PDF