Publications by authors named "Juan Francisco Sanchez-Royo"

A significant part of the present and future of optoelectronic devices lies on thin multilayer heterostructures. Their optical properties depend strongly on strain, being essential to the knowledge of the stress level to optimize the growth process. Here the structural and microstructural characteristics of sub-micron a-ZnO epilayers (12 to 770 nm) grown on r-sapphire by metal-organic chemical vapour deposition are studied.

View Article and Find Full Text PDF

Temperature dependent X-ray photoemission spectroscopy (XPS) has been employed to examine the spin-crossover (SCO) transition in the nanocrystals of 3D Hoffman-like {Fe(pz)[Pt(CN)]}. Consistent with the existing literature, the temperature-dependent variations in the Fe 2p core-level spectrum provide unambiguous evidence of the spin-state transition in this SCO complex. One of the many possible reasons behind a lack of discernible temperature-driven shifts in the binding energies of both the N 1s core-level components could be the immunity of its HS electronic configuration to thermal fluctuations.

View Article and Find Full Text PDF

Temperature dependent X-ray photoemission spectroscopy (XPS) has been employed to examine the Fe 2p and N 1s core levels of the studied Fe(II) spin crossover (SCO) complexes of interest, namely: Fe(phen)(NCS), [Fe(3-Fpy){Ni(CN)}], and [Fe(3-Fpy){Pt(CN)}]. The changes in the Fe 2p core-level spectra with temperature indicate spin state transitions in these SCO complexes, which are consistent with one's expectations and the existing literature. Additionally, the temperature dependence of the binding energy of the N 1s core-level provides further physical insights into the ligand-to-metal charge transfer phenomenon in these molecules.

View Article and Find Full Text PDF

Organic-inorganic layered perovskites are currently some of the most promising 2D van der Waals materials. Low crystal quality usually broadens the exciton line width, obscuring the fine structure of the exciton in conventional photoluminescence experiments. Here, we propose a mechanical approach to reducing the effect of spectral diffusion by means of hBN capping on layered perovskites, revealing the exciton fine structure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont50vcktaknquce5ho3ia1sumv1ddi2tl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once