Publications by authors named "Juan Falcon-Perez"

Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication.

View Article and Find Full Text PDF

Objective: Acute intermittent porphyria (AIP) is a rare metabolic disorder caused by haploinsufficiency of hepatic porphobilinogen deaminase (PBGD), the third enzyme of the heme biosynthesis. Individuals with AIP experience neurovisceral attacks closely associated with hepatic overproduction of potentially neurotoxic heme precursors.

Design: We replicated AIP in non-human primates (NHPs) through selective knockdown of the hepatic gene and evaluated the safety and therapeutic efficacy of human PBGD (hPBGD) mRNA rescue.

View Article and Find Full Text PDF

Renowned for their role in haemostasis and thrombosis, platelets are also increasingly recognized for their contribution in innate immunity, immunothrombosis and inflammatory diseases. Platelets express a wide range of receptors, which allows them to reach a variety of activation endpoints and grants them immunomodulatory functions. Activated platelets release extracellular vesicles (PEVs), whose formation and molecular cargo has been shown to depend on receptor-mediated activation and environmental cues.

View Article and Find Full Text PDF

Circulating cell-free nucleic acids are considered a promising source of biomarkers for diseases and cancer. Liquid biopsy biomarkers for brain tumours represent a major, still unmet, clinical need. In plasma, nucleic acids can be free or be associated with extracellular vesicles (EVs).

View Article and Find Full Text PDF

Seminal plasma (SP) is rich in extracellular vesicles (EVs), which are still poorly studied, especially in livestock species. To better understand their functional role in both spermatozoa and endometrial epithelial cells, proper characterization of EVs is an essential step. The objective was to phenotypically characterize porcine seminal EVs (sEVs) using cryogenic electron microscopy (cryo-EM), which allows visualization of EVs in their native state.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been involved in metabolic syndrome, although their specific role in the development of the pathology is still unknown. To further study the role of EVs, we have analysed by Raman tweezers microspectroscopy and mass spectrometry-based lipidomics the small EVs population secreted by fatty (ZF) and lean (ZL) hepatocytes obtained from Zucker rats. We have also explored in vivo and ex vivo biodistribution of these EVs through fluorine-18-radiolabelling using a positron emission tomography imaging.

View Article and Find Full Text PDF

Background: Three-dimensional cellular models provide a more comprehensive representation of in vivo cell properties, encompassing physiological characteristics and drug susceptibility.

Methods: Primary hepatocytes were seeded in ultra-low attachment plates to form spheroids, with or without tumoral cells. Spheroid structure, cell proliferation, and apoptosis were analyzed using histological staining techniques.

View Article and Find Full Text PDF

The prostate gland is a complex and heterogeneous organ composed of epithelium and stroma. Whilst many studies into prostate cancer focus on epithelium, the stroma is known to play a key role in disease with the emergence of a cancer-associated fibroblasts (CAF) phenotype associated upon disease progression. In this work, we studied the metabolic rewiring of stromal fibroblasts following differentiation to a cancer-associated, myofibroblast-like, phenotype.

View Article and Find Full Text PDF

In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C.

View Article and Find Full Text PDF
Article Synopsis
  • The 'QuantitatEVs' workshop focused on quantitative methods for analyzing extracellular vesicles (EVs), from large bulk samples to individual vesicles, emphasizing new technologies.
  • * The event explored critical issues in analyzing EV-associated molecules and biophysical features, which are key for discovering and validating EV biomarkers for clinical use.
  • * Held in Trento, Italy, from January 31 to February 2, 2023, the workshop included a follow-up event in Milan aimed at supporting early career researchers.
View Article and Find Full Text PDF
Article Synopsis
  • * Despite advancements in understanding EV biology and methodology, challenges persist in areas like nomenclature, separation, and characterization, hindering their application in research and clinical settings.
  • * The International Society for Extracellular Vesicles (ISEV) has released the updated 'Minimal Information for Studies of Extracellular Vesicles' (MISEV2023) to guide researchers on best practices for EV research, encompassing the latest techniques and addressing various methods of EV production and study.
View Article and Find Full Text PDF
Article Synopsis
  • Salivary extracellular vesicles (EVs) are promising biomarkers due to how easy it is to collect saliva, but inconsistent EV isolation methods limit their clinical use.
  • The study compared eight different EV isolation techniques, focusing on EV concentration, size, protein content, and purity, particularly examining the effects of age on these vesicles.
  • Results indicated that magnetic bead immunocapture improved EV recovery, while some methods showed better protein concentration and purity, paving the way for using salivary EVs as biomarkers for diseases throughout different life stages.
View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.

View Article and Find Full Text PDF

Intercellular communication is a cell-type and stimulus-dependent event driven not only by soluble factors but also by extracellular vesicles (EVs). EVs include vesicles of different size and origin that contain a myriad of molecules. Among them, small EVs (sEV; <200 nm) have been shown to modulate not just regional cell responses but also distant organ behavior.

View Article and Find Full Text PDF

Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e.

View Article and Find Full Text PDF

The human CERS2 gene encodes a ceramide synthase enzyme, known as CERS2 (ceramide synthase 2). This protein is also known as LASS2 (LAG1 longevity assurance homolog 2) and TMSG1 (tumor metastasis-suppressor gene 1). Although previously described as a tumor suppressor for different types of cancer, such as prostate or liver cancer, it has also been observed to promote tumor growth in adenocarcinoma.

View Article and Find Full Text PDF

The use of platelet-rich plasma (PRP) has gained increasing interest in recent decades. The platelet secretome contains a multitude of growth factors, cytokines, chemokines, and other biological biomolecules. In recent years, developments in the field of platelets have led to new insights, and attention has been focused on the platelets' released extracellular vesicles (EVs) and their role in intercellular communication.

View Article and Find Full Text PDF

Introduction: The heat shock protein 90 (Hsp90) is a protein involved in many different biological processes and especially in cell survival. Some of these functions require the participation of other biological molecules, so Hsp90 is a chaperone that takes part in many protein-protein interactions working as a critical signaling hub protein. As a member of the heat shock protein family, Hsp90 expression is regulated under certain environmental and/or stressful situations, therefore Hsp90 concentration can be monitored and linked to these effects.

View Article and Find Full Text PDF

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes.

View Article and Find Full Text PDF

Several studies have described the contribution of glutamate-transforming microbiota to the development of chronic ailments. For instance, the blood concentration of glutamate is higher in some patients with fibromyalgia, chronic fatigue, and pain. Taking advantage of a naturally occurring strain of that is able to transform glutamate in γ-aminobutyric caid (GABA), B.

View Article and Find Full Text PDF

Hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) is a feature of many solid tumours and is a key pathogenic driver in the inherited condition Tuberous Sclerosis Complex (TSC). Modulation of the tumour microenvironment by extracellular vesicles (EVs) is known to facilitate the development of various cancers. The role of EVs in modulating the tumour microenvironment and their impact on the development of TSC tumours, however, remains unclear.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices.

View Article and Find Full Text PDF

The standardization of clinical studies using extracellular vesicles (EVs) has mainly focused on the procedures employed for their isolation and characterization; however, preanalytical aspects of sample collection, handling and storage also significantly impact the reproducibility of results. We conducted an online survey based on SPREC (Standard PREanalytical Code) among members of GEIVEX (Grupo Español de Investigación en Vesiculas Extracelulares) to explore how different laboratories handled fluid biospecimens destined for EV analyses. We received 70 surveys from forty-three different laboratories: 44% focused on plasma, 9% on serum and 16% on urine.

View Article and Find Full Text PDF