Publications by authors named "Juan F Leal"

XPG (Xeroderma pigmentosum group G complementing factor) is a protein associated with DNA repair and transcription. Point mutations in ERCC5, the gene coding for XPG, cause the cancer-prone disorder xeroderma pigmentosum (XP) while truncation mutations give rise to individuals with the combined clinical features of XP and Cockayne syndrome. Polymorphisms of ERCC5 or alterations in XPG mRNA expression were also associated to an increase risk of different cancers types and to prognosis of cancer patients.

View Article and Find Full Text PDF

PIM serine/threonine kinases are overexpressed, translocated, or amplified in multiple B-cell lymphoma types. We have explored the frequency and relevance of PIM expression in different B-cell lymphoma types and investigated whether PIM inhibition could be a rational therapeutic approach. Increased expression of PIM2 was detected in subsets of mantle cell lymphoma, diffuse large B-cell lymphoma (DLBLC), follicular lymphoma, marginal zone lymphoma-mucosa-associated lymphoid tissue type, chronic lymphocytic leukemia, and nodal marginal zone lymphoma cases.

View Article and Find Full Text PDF

The serine/threonine Pim 1 kinase is an oncogene whose expression is deregulated in several human cancers. Overexpression of Pim 1 facilitates cell cycle progression and suppresses apoptosis. Hence pharmacologic inhibitors of Pim 1 are of therapeutic interest for cancer.

View Article and Find Full Text PDF

Zalypsis is a new synthetic alkaloid tetrahydroisoquinoline antibiotic that has a reactive carbinolamine group. This functionality can lead to the formation of a covalent bond with the amino group of selected guanines in the DNA double helix, both in the absence and in the presence of methylated cytosines. The resulting complex is additionally stabilized by the establishment of one or more hydrogen bonds with adjacent nucleotides in the opposite strand as well as by van der Waals interactions within the minor groove.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases (PI3K) constitute important regulators of various signaling pathways with relevance in cancer. Enhanced activation of p110alpha, the catalytic subunit of PI3K, was found in a high proportion of many human tumor types. We generated a mouse model in which PI3K is activated by forced recruitment of p110alpha to the membrane.

View Article and Find Full Text PDF

Background: P53 activation can trigger various outcomes, among them reversible growth arrest or cellular senescence. It is a live debate whether these outcomes are influenced by quantitative or qualitative mechanisms. Furthermore, the relative contribution of p53 to Ras-induced senescence is also matter of controversy.

View Article and Find Full Text PDF

Introduction of conditional murine p53 (p53val135) and oncogenic ras into double p53/p21-null mouse embryonic fibroblasts (MEFs) showed that p21waf1 was not required for combined ras/p53-induced senescent-like growth arrest. We used this cellular system to identify key players in the ras-p53-induced senescence in the absence of p21. Applying a retroviral-based genetic screen, we obtained mRNA antisense fragments against a cluster of 14 different ribosomal proteins which loss of function bypasses p53-induced growth arrest.

View Article and Find Full Text PDF

PTEN/PI3K/AKT constitutes an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase which main substrate is the phosphatidyl-inositol,3,4,5 triphosphate (PIP3), the product of PI3K. Increase in PIP3 recruits AKT to the membrane where it is activated by other kinases also dependent on PIP3.

View Article and Find Full Text PDF

Ectopic expression of conditional murine p53 (p53val135) and oncogenic ras is enough to induce a senescent-like growth arrest at the restrictive temperature. We took advantage of this cellular system to identify new key players in the ras/p53-induced senescence. Applying a retroviral-based genetic screen, we obtained an antisense RNA fragment against PPP1CA, the catalytic subunit of protein phosphatase 1alpha, whose loss of function bypasses ras/p53-induced growth arrest and senescence.

View Article and Find Full Text PDF

MAP17 is a non-glycosylated membrane-associated protein that has been shown to be over-expressed in human carcinomas, suggesting a possible role of this protein in tumorigenesis. However, very little is known about the molecular mechanism mediating the possible tumor promoting properties of MAP17. To analyze the effect of MAP17 on cell survival, we used Rat1 fibroblasts model where Myc over-expression promotes apoptosis in low serum conditions.

View Article and Find Full Text PDF

Tumorigenesis occurs when the mechanisms involved in the control of tissue homeostasis are disrupted and cells stop responding to physiological signals. Therefore, genes capable of desensitizing tumoral cells from physiological signals may provide a selective advantage within the tumoral mass and influence the outcome of the disease. We undertook a large-scale genetic screen to identify genes able to alter the cellular response to physiological signals and provide selective advantage once tumorigenesis has begun.

View Article and Find Full Text PDF
Article Synopsis
  • Aplidin (plitidepsin) is an anticancer drug derived from a marine organism, showing strong anti-tumor potential in preclinical trials and is currently in phase II clinical trials for various cancers.
  • Aplidin works by inducing oxidative stress in tumor cells, leading to the activation of specific protein kinases, although its complete mechanism of action is not fully understood.
  • The effectiveness of Aplidin is linked to levels of the protein p27; lower levels of p27 enhance sensitivity to the drug, making it a potential predictor of patient response in ongoing clinical studies.
View Article and Find Full Text PDF

We undertook a large-scale genetic screen to identify genes able to alter the cellular response to physiological signals and provide selective advantage once tumorigenesis has begun. We identified MAP17, a small 17 kDa non-glycosylated membrane protein previously identified, being overexpressed in carcinomas. We found that MAP17 is overexpressed in a great variety of human carcinomas.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases (PI3Ks) constitute important regulators of signaling pathways. The PIK3CA gene encoding the p110-alpha catalytic subunit represents one of the highly mutated oncogenes identified in human cancer. Here, we report new markers for in vivo PI3K activation in prostate.

View Article and Find Full Text PDF

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT constitute an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase and its main substrate phosphatidyl-inositol 3,4,5 triphosphate (PIP3) is the product of PI3K. Increase in PIP3 recruits AKT to the membrane where is activated by other kinases also dependent on PIP3.

View Article and Find Full Text PDF

AKT1/PKB is a serine/threonine protein kinase that regulates biological processes such as proliferation, apoptosis and growth in a variety of cell types. To assess the oncogenic capability of an activated form of AKT in vivo we have generated several transgenic mouse lines that overexpress in the mammary epithelium the murine Akt1 gene modified with a myristoylation signal, which renders active this protein by localizing it to the plasma membrane. We demonstrate that expression of myristoylated AKT in the mammary glands increases the susceptibility of these mice to the induction of mammary tumors of epithelial origin by the carcinogen 9,10-dimethyl-1,2 benzanthracene (DMBA).

View Article and Find Full Text PDF
Article Synopsis
  • Yondelis (Trabectedin) is being tested for its effectiveness against advanced soft tissue sarcoma in patients who have already undergone treatment.
  • Researchers created several tumor cell lines from untreated sarcoma patients to analyze how sensitive or resistant these cells were to Trabectedin and another chemotherapy drug, doxorubicin.
  • The study found that some cell lines were resistant to Trabectedin, but this resistance did not relate to doxorubicin resistance, and mutations or deletions in the p53 gene were linked to heightened sensitivity to Trabectedin.
View Article and Find Full Text PDF

Apoptotic pathways, including the phosphatidylinositol-3-kinase (PI3K)/AKT survival pathway, are altered in most cancer cells in relation to their normal counterparts and these differences may present an excellent therapeutic window. To gain insight into the relevance of the PI3K pathway as a target for drug discovery we generated tumor cell lines from different tumor samples that we maintained at low passage. The characterization of these cell lines indicates that all of them have constitutively activated the PI3K pathway through different mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • The p53 tumor suppressor protein is crucial for preventing cancer, as it is often mutated in human cancers, highlighting its role as a key defense mechanism.
  • p53 operates within a complex network of signaling pathways that include feedback loops with other proteins, notably beta-catenin and Akt, which influence its activity and overall cell fate.
  • Disruption of the balance between p53, Mdm2, beta-catenin, and Akt due to genetic alterations can impair p53's tumor suppressor functions, contributing to cancer development.
View Article and Find Full Text PDF
Article Synopsis
  • p53 is a crucial tumor suppressor protein that plays a key role in cancer defense, as it is often genetically altered in human cancers.
  • Recent research highlights p53's involvement in a complex network of signaling pathways, particularly through autoregulatory feedback loops that involve other proteins like beta catenin and Akt.
  • The interplay between p53 and Mdm2 is central to these loops, with each component influencing the other's activity, and imbalances in this system due to genetic alterations can undermine p53's protective effects, promoting cancer development.
View Article and Find Full Text PDF

The p53 tumor suppressor protein and the Akt/PKB kinase play important roles in the transduction of pro-apoptotic and anti-apoptotic signals, respectively. We provide evidence that conflicting signals transduced by Akt and p53 are integrated via negative feedback between the two pathways. On the one hand, the combination of ionizing radiation and survival factor deprivation, which leads to rapid apoptosis of IL-3 dependent DA-1 cells, entails a caspase- and p53-dependent destruction of Akt.

View Article and Find Full Text PDF