Publications by authors named "Juan F Cardenas-Gonzalez"

Industrial effluents from chromium-based products lead to chromium pollution in the environment. Several technologies have been employed for the removal of chromium (Cr) from the environment, including adsorption, ion-exchange, bioremediation, etc. In this study, we isolated a Cr (VI)-resistant fungus, from contaminated soil, which could reduce chromium.

View Article and Find Full Text PDF

The objective of this work was to study the resistance and removal capacity of heavy metals by the fungus . We analyzed the resistance to some heavy metals by dry weight and plate: the fungus grew in 2000 ppm of zinc, lead, and mercury, 1200 and 1000 ppm of arsenic (III) and (VI), 800 ppm of fluor and cobalt, and least in cadmium (400 ppm). With respect to their potential of removal of heavy metals, this removal was achieved for zinc (100%), mercury (83.

View Article and Find Full Text PDF

The biosorption of As(III) on iron-coated fungal biomass of Paecilomyces sp. was studied in this work. It was found that the biomass was very efficient removing the metal in solution, using Atomic Absorption, reaching the next percentage of removals: 64.

View Article and Find Full Text PDF

A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxic Cr(VI) to Cr(III). This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This showed the highest activity at 37°C and pH 7.

View Article and Find Full Text PDF

The biosorption of mercury (II) on 14 fungal biomasses, Aspergillus flavus I-V, Aspergillus fumigatus I-II, Helminthosporium sp., Cladosporium sp., Mucor rouxii mutant, M.

View Article and Find Full Text PDF

A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico. The strain was identified as Paecilomyces sp., by macro- and microscopic characteristics.

View Article and Find Full Text PDF