Publications by authors named "Juan F"

The chiral lattice structure of twisted bilayer graphene with D_{6} symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field.

View Article and Find Full Text PDF

The bulk photovoltaic effect (BPVE) offers a promising avenue to surpass the efficiency limitations of current solar cell technology. However, disentangling intrinsic and extrinsic contributions to photocurrent remains a significant challenge. Here, we fabricate high-quality, lateral devices based on atomically thin ReS with minimal contact resistance, providing an optimal platform for distinguishing intrinsic bulk photovoltaic signals from other extrinsic photocurrent contributions originating from interfacial effects.

View Article and Find Full Text PDF
Article Synopsis
  • Vibrio parahaemolyticus is a harmful bacteria that affects mud crabs, causing significant health and economic issues in the industry, particularly in South China.
  • This research used genome sequencing and various experiments to uncover how this bacteria infects mud crabs, identifying over 400 genes related to its virulence and adherence.
  • The findings highlight key genes involved in the infection process, which can help in developing strategies for preventing and controlling outbreaks of this pathogen.
View Article and Find Full Text PDF

The entanglement entropy is a unique probe to reveal universal features of strongly interacting many-body systems. In two or more dimensions these features are subtle, and detecting them numerically requires extreme precision, a notoriously difficult task. This is especially challenging in models of interacting fermions, where many such universal features have yet to be observed.

View Article and Find Full Text PDF

Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry.

View Article and Find Full Text PDF

Kondo lattices are ideal testbeds for the exploration of heavy-fermion quantum phases of matter. While our understanding of Kondo lattices has traditionally relied on complex bulk f-electron systems, transition metal dichalcogenide heterobilayers have recently emerged as simple, accessible and tunable 2D Kondo lattice platforms where, however, their ground state remains to be established. Here we present evidence of a coherent ground state in the 1T/1H-TaSe heterobilayer by means of scanning tunneling microscopy/spectroscopy at 340 mK.

View Article and Find Full Text PDF

SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases.

View Article and Find Full Text PDF

Double perovskites without lead element have attracted great attention in recent years. Further increasing the photoluminescence quantum yield of lead-free double perovskites is necessary for their potential applications. In this work, Na doped CsSnI nanocrystals were synthesized by hot injection method.

View Article and Find Full Text PDF

The discovery of new low-dimensional transition-metal chalcogenides is contributing to the already prosperous family of these materials. In this study, needle-shaped single crystals of a quasi-one-dimensional (1D) material, (NbSeI)I, were grown by chemical vapor transport, and the structure was solved by single-crystal X-ray diffraction (XRD). The structure has 1D (NbSeI) chains along the [101] direction, with two I ions per formula unit directly bonded to Nb.

View Article and Find Full Text PDF

Lansium domesticum is identified as a potential source of anticancer compounds. However, there are minimal studies on its anti-lung cancer properties as well as its mechanism of action. Here, we show the specificity of lanzones hexane (LH) leaf extracts to non-small cell lung cancer cells (A549) compared to normal lung fibroblast cells (CCD19-Lu) and normal epithelial prostate cells (PNT2).

View Article and Find Full Text PDF

The global use of mineral resources has increased exponentially for decades and will continue to grow for the foreseeable future, resulting in increasingly negative impacts on the surrounding environment. However, to date, there are a lack of historical and current spatial extent datasets with high accuracy for mining areas in many parts of the world, which has hindered a more comprehensive understanding of the environmental impacts of mining. Using the Google Earth Engine cloud platform and the Landsat normalized difference vegetation index (NDVI) datasets, the spatial extent data of open-pit mining areas for eight years (1985, 1990, 1995, 2000, 2005, 2010, 2015, and 2020) was extracted by the Otsu algorithm.

View Article and Find Full Text PDF

L. (Guyabano) leaves are reported to exhibit anticancer activity against cancer cells. In this study, the ethyl acetate extract from guyabano leaves was purified through column chromatography, and the cytotoxic effects of the semi-purified fractions were evaluated against A549 lung cancer cells using in vitro MTS cytotoxicity and scratch/wound healing assays.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found a soft collective mode in single-layer NbSe, evidenced by a unique resonance in tunneling spectra, which connects to changes in the superconducting gap and diminishes with increased temperature and magnetic fields.
  • * The observations suggest that these fluctuations relate to a collective Leggett mode, indicating significant electronic correlations in 2D materials like transition metal dichalcogenides, pointing towards potential for novel superconducting properties in these materials.
View Article and Find Full Text PDF

Background: Biliverdin (BV) containing far-red light photoactivatable near-infrared fluorescent protein (NIR-FP) named PAiRFP1 has been developed by directed molecular evolution from one bathy bacteriophytochrome of Agrobacterium tumefaciens C58 called Agp2 or AtBphP2. Usually, the fluorescence intensity of the NIR emission spectra of PAiRFP1 tends to increase upon repeated excitation by far-red light.

Objective: This study aimed at exploring the role of PAiRFP1 and its mutants, such as V386A, V480A, and Y498H, as NIR biosensors for the detection of Hg ions in the buffer solutions.

View Article and Find Full Text PDF

The water concentrations of 12 heavy and other metals/metalloids were analyzed seasonally along two horizontal-flow constructed wetlands (CWs) (Tancat Mília-TM and Tancat l'Illa-TLI) located within the Mediterranean Albufera de València Natural Park during 2020-2021. A wide-scope screening of pesticides present in waters was also performed. The two CWs were created to improve water quality and increase biodiversity.

View Article and Find Full Text PDF

Large scale ordered Au nanoarrays are fabricated by nanosphere lithography technique. The photoluminescence improvement of CsPbBrI nanocrystals by more than three times is realized in the CsPbBrI nanocrystal/Au nanoarray/Si structure. Time-resolved photoluminescence decay curves indicate that the lifetime is decreased by introducing the Au nanoarrays, which results in a increasing radiation recombination rate.

View Article and Find Full Text PDF

A photoactivatable near-infrared fluorescent protein (NIR-FP) PAiRFP1 has been developed by 15 amino acid substitutions in its nonfluorescent template Agp2. In our previous communication, we investigated the role of three amino acids in PHY domain distal from BV molecule. The impact of the twelve amino acids in GAF domain, especially five residues near BV-binding pocket is unclear.

View Article and Find Full Text PDF

The absence of mirror symmetry, or chirality, is behind striking natural phenomena found in systems as diverse as DNA and crystalline solids. A remarkable example occurs when chiral semimetals with topologically protected band degeneracies are illuminated with circularly polarized light. Under the right conditions, the part of the generated photocurrent that switches sign upon reversal of the light's polarization, known as the circular photo-galvanic effect, is predicted to depend only on fundamental constants.

View Article and Find Full Text PDF

Magnetic Weyl semimetals are a newly discovered class of topological materials that may serve as a platform for exotic phenomena, such as axion insulators or the quantum anomalous Hall effect. Here, we use angle-resolved photoelectron spectroscopy and ab initio calculations to discover Weyl cones in CoS, a ferromagnet with pyrite structure that has been long studied as a candidate for half-metallicity, which makes it an attractive material for spintronic devices. We directly observe the topological Fermi arc surface states that link the Weyl nodes, which will influence the performance of CoS as a spin injector by modifying its spin polarization at interfaces.

View Article and Find Full Text PDF

Two photoactivatable near infrared fluorescent proteins (NIR FPs) named "PAiRFP1" and "PAiRFP2" are formed by directed molecular evolution from Agp2, a bathy bacteriophytochrome of C58. There are 15 and 24 amino acid substitutions in the structure of PAiRFP1 and PAiRFP2, respectively. A comprehensive molecular exploration of these bacteriophytochrome photoreceptors (BphPs) are required to understand the structure dynamics.

View Article and Find Full Text PDF

Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (). Nodal band crossings with linear dispersion are expected to have at most [Formula: see text], which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4.

View Article and Find Full Text PDF

Mesothelin (MSLN) is a cell surface glycoprotein overexpressed in several solid malignancies, including gastric, lung, mesothelioma, pancreatic and ovarian cancers. While several MSLN-targeting therapeutic approaches are in development, only limited efficacy has been achieved in patients. A potential shortcoming of several described antibody-based approaches is that they target the membrane distal region of MSLN and, additionally, are known to be handicapped by the high levels of circulating soluble MSLN in patients.

View Article and Find Full Text PDF

Bacteriophytochrome photoreceptors (BphPs) containing biliverdin (BV) have great potential for the development of genetically engineered near-infrared fluorescent proteins (NIR FPs). We investigated a photoactivatable fluorescent protein PAiRFP1, was engineered through directed molecular evolution. The coexistence of both red light absorbing (Pr) and far-red light absorbing (Pfr) states in dark is essential for the photoactivation of PAiRFP1.

View Article and Find Full Text PDF

Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low-symmetry transition-metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents.

View Article and Find Full Text PDF