The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. The TUs in the QPS list were updated based on a verification, against their respective authoritative databases, of the correctness of the names and completeness of synonyms.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms intended for use in the food or feed chains. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications' which should be assessed at strain and/or product level by EFSA's Scientific Panels. The generic qualification 'the strains should not harbour any acquired antimicrobial resistance (AMR) genes to clinically relevant antimicrobials' applies to all QPS bacterial TUs.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) approach was developed to provide a generic pre-evaluation of the safety of biological agents. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. It is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at strain or product level, and reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) was developed to provide a safety pre-assessment within EFSA for microorganisms. Strains belonging to QPS taxonomic units (TUs) still require an assessment based on a specific data package, but QPS status facilitates fast track evaluation. QPS TUs are unambiguously defined biological agents assessed for the body of knowledge, their safety and their end use.
View Article and Find Full Text PDFQualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance are assessed. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. It is based on an assessment of the taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit (TU) are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels.
View Article and Find Full Text PDFMicroorganisms are intentionally added at different stages of the food and feed chain (food or feed additive, novel food or plant protection product) and are subjected to regulation and safety assessment by the European Food Safety Authority. Safety evaluation is based on application dossiers for market authorisation to the European Commission. The qualified presumption of safety (QPS) concept was developed in 20031 to provide a harmonised generic safety pre-appraisal of the above microorganisms.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) was developed to provide a harmonised generic pre-evaluation procedure to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) concept was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, considered to be 'qualifications' which should be assessed at the strain level by the EFSA's scientific Panels.
View Article and Find Full Text PDFThe qualified presumption of safety (QPS) concept was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected as 'qualifications' which should be assessed at the strain level by the EFSA's scientific Panels.
View Article and Find Full Text PDFEFSA is requested to assess the safety of a broad range of biological agents in the context of notification for market authorisation as sources of food and feed additives, food enzymes and plant protection products. The qualified presumption of safety (QPS) assessment was developed to provide a harmonised generic pre-assessment to support safety risk assessments performed by EFSA's scientific Panels. The safety of unambiguously defined biological agents (at the highest taxonomic unit appropriate for the purpose for which an application is intended), and the completeness of the body of knowledge are assessed.
View Article and Find Full Text PDFEFSA was requested to assess the safety of a broad range of biological agents in the context of notifications for market authorisation as sources of food and feed additives, enzymes and plant protection products. The qualified presumption of safety (QPS) assessment was developed to provide a harmonised generic pre-assessment to support safety risk assessments performed by EFSA's Scientific Panels. The safety of unambiguously defined biological agents (at the highest taxonomic unit appropriate for the purpose for which an application is intended) and the completeness of the body of knowledge were assessed.
View Article and Find Full Text PDFThe autochthonous microbiota is the community of microorganisms that colonizes the skin and mucosal surfaces. The symbiosis is, generally, mutualistic but it can become parasitic due to immune response alterations. The skin microbiota includes bacteria (95%), lipophilic fungi and mites.
View Article and Find Full Text PDFLactobacillus salivarius CECT 5713, isolated from human milk, has immunomodulatory, anti-inflammatory and antiinfectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, the relationships between several genetic features of L. salivarius CECT 5713 and the corresponding phenotypes were evaluated.
View Article and Find Full Text PDFIn the present work, the adhesion of 43 human lactobacilli isolates to mucin has been studied. The most adherent strains were selected, and their capacities to adhere to three epithelial cell lines were studied. All intestinal strains and one vaginal isolate adhered to HT-29 cells.
View Article and Find Full Text PDFThe lysin gene (lysA2) of the Lactobacillus casei bacteriophage A2 was cloned and expressed in Escherichia coli. LysA2 is an endopeptidase that hydrolyzes the bond between the terminal D: -alanine of the peptidoglycan tetrapeptide and the aspartic acid residue that forms the bridge with the L: -lysine of a neighboring peptidoglycan chain, characteristic of Gram-positive bacteria included into the A4 peptidoglycan subgroup. This includes most lactobacilli, Lactococcus lactis, Pediococcus acidilactici, and Pediococcus pentosaceus, the walls of all of which were substrates for the enzyme.
View Article and Find Full Text PDFEnferm Infecc Microbiol Clin
March 2008
Vaginal microbiota, mainly comprised of Lactobacillus crispatus, L. jensenii and L. gasseri, protect the mucosa against the establishment of pathogenic microorganisms through three complementary mechanisms: a) specific adherence to the epithelium, which blocks colonization of pathogens, b) production of antimicrobial compounds, and c) co-aggregation with pathogens, which enhances their microbiocidal effect.
View Article and Find Full Text PDF