Water scarcity in arid and semi-arid areas has led to the development of regulated deficit irrigation (RDI) strategies on most species of fruit trees in order to improve water productivity. For a successful implementation, these strategies require continuous feedback of the soil and crop water status. This feedback is provided by physical indicators from the soil-plant-atmosphere continuum, as is the case of the crop canopy temperature, which can be used for the indirect estimation of crop water stress.
View Article and Find Full Text PDFThe number of sensors, ground-based and remote, exploiting the relationship between soil dielectric response and soil water content continues to grow. Empirical expressions for this relationship generally work well in coarse-textured soils but can break down for high-surface area and intricate materials such as clayey soils. Dielectric mixing models are helpful for exploring mechanisms and developing new understanding of the dielectric response in porous media that do not conform to a simple empirical approach, such as clayey soils.
View Article and Find Full Text PDFWater is the main limiting factor in agricultural production as well as a scarce resource that needs to be optimized. The measurement of soil water with sensors is an efficient way for optimal irrigation management. However, commercial sensors are still too expensive for most farmers.
View Article and Find Full Text PDF