Publications by authors named "Juan D G Duran"

In this paper, we study the shear-induced flow of magneto-polymer composites, consisting of dispersions of magnetic particles in solutions of polymers, as a competition between the colloidal forces amid particles and their bulk transport induced by the hydrodynamic forces. For this aim, we analyse the role of different experimental parameters. Firstly, by using only solutions of a well-known anionic polymer (sodium alginate), we provoke a moderate hindering of particle movement, but keeping the liquid-like state of the samples.

View Article and Find Full Text PDF

Novel artificial tissues with potential usefulness in local-based therapies have been generated by tissue engineering using magnetic-responsive nanoparticles (MNPs). In this study, we performed a comprehensive in vivo characterization of bioengineered magnetic fibrin-agarose tissue-like biomaterials. First, in vitro analyses were performed and the cytocompatibility of MNPs was demonstrated.

View Article and Find Full Text PDF

Magnetic hydrogels (ferrogels) are soft materials with a wide range of applications, especially in biomedicine because (i) they can be provided with the required biocompatibility; (ii) their heterogeneous structure allows their use as scaffolds for tissue engineering; (iii) their mechanical properties can be modified by changing different design parameters or by the action of magnetic fields. These characteristics confer them unique properties for acting as patterns that mimic the architecture of biological systems. In addition, and (iv) given their high porosity and aqueous content, ferrogels can be loaded with drugs and guided towards specific targets for local (non-systemic) pharmaceutical treatments.

View Article and Find Full Text PDF

Even in the absence of cross-linking, at large enough concentration, long polymer strands have a strong influence on the rheology of aqueous systems. In this work, we show that solutions of medium molecular weight (120 000-190 000 g mol) alginate polymer retained a liquid-like behaviour even for concentrations as large as 20% w/v. On the contrary, solutions of alginate polymer of larger (and also polydisperse) molecular weight (up to 600 000 g mol) presented a gel-like behaviour already at concentrations of 7% w/v.

View Article and Find Full Text PDF

The encapsulation of cells into biopolymer matrices enables the preparation of engineered substitute tissues. Here we report the generation of novel 3D magnetic biomaterials by encapsulation of magnetic nanoparticles and human hyaline chondrocytes within fibrin-agarose hydrogels, with potential use as articular hyaline cartilage-like tissues. By rheological measurements we observed that, (i) the incorporation of magnetic nanoparticles resulted in increased values of the storage and loss moduli for the different times of cell culture; and (ii) the incorporation of human hyaline chondrocytes into nonmagnetic and magnetic fibrin-agarose biomaterials produced a control of their swelling capacity in comparison with acellular nonmagnetic and magnetic fibrin-agarose biomaterials.

View Article and Find Full Text PDF

Anisotropy is an intrinsic feature of most of the human tissues (e.g. muscle, skin or cartilage).

View Article and Find Full Text PDF

Magnetic gels (ferrogels) are heterogeneous systems structured at the nanoscale that contains magnetic particles dispersed in three-dimensional networks of polymer chains. In the present work, the magnetic particles were synthesized with a core-shell structure, consisting of sepiolite particles covered by magnetite nanoparticles. These composite particles had a rod-like shape with a high aspect ratio.

View Article and Find Full Text PDF

The generation of biomaterials with adequate biomechanical and structural properties remains a challenge in tissue engineering and regenerative medicine. Earlier research has shown that nanostructuration and cross-linking techniques improved the biomechanical and structural properties of different biomaterials. Currently, uncompressed and nanostructured fibrin-agarose hydrogels (FAH and NFAH, respectively) have been used successfully in tissue engineering.

View Article and Find Full Text PDF

The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous.

View Article and Find Full Text PDF

We report the preparation of novel magnetic field-responsive tissue substitutes based on biocompatible multi-domain magnetic particles dispersed in a fibrin-agarose biopolymer scaffold. We characterized our biomaterials with several experimental techniques. First we analyzed their microstructure and found that it was strongly affected by the presence of magnetic particles, especially when a magnetic field was applied at the start of polymer gelation.

View Article and Find Full Text PDF

We report an experimental enhancement of the magnetic susceptibility of suspensions of particles that is related to the spatial distribution of the magnetic phase in the particles. At low field, the susceptibility of suspensions of nickel-coated diamagnetic spheres was approximately 75% higher than that of suspensions of solid nickel spheres with the same nickel content. This result was corroborated by magnetostatics theory and simulation.

View Article and Find Full Text PDF

The aim of this study was to evaluate the viability and biomechanical properties of artificial human oral mucosa stroma (HOMS) subjected to cryopreservation with different cryoprotectant solutions. Artificial HOMS based on a fibrin-agarose matrix with human gingival fibroblasts cultured 7 days in vitro were cryopreserved with three cryoprotectant solutions: (A) TC-199 Medium, DMSO 15%, albumin; (B) DMEM, FCS, DMSO 10%; (C) QC Medium, glycerol. As controls, artificial HOMS not subjected to cryopreservation (CF) and HOMS cryopreserved without cryoprotectant solution (CS) were used.

View Article and Find Full Text PDF

The effect of hydration on the biomechanical properties of fibrin and fibrin-agarose (FA) tissue-like hydrogels is reported. Native hydrogels with approximately 99.5% of water content and hydrogels with water content reduced until 90% and 80% by means of plastic compression (nanostructuration) were generated.

View Article and Find Full Text PDF

This paper is devoted to the steady-state rheological properties of two new kinds of ferrofluids. One of these was constituted by CoNi nanospheres of 24 nm in diameter, whereas the other by CoNi nanofibers of 56 nm in length and 6.6 nm in width.

View Article and Find Full Text PDF

This paper reports the preparation of magnetic fluids consisting of magnetite nanoparticles dispersed in an ionic liquid. Different additives were used in order to stabilize the fluids. Colloidal stability was checked by magnetic sedimentation, centrifugation and direct observation.

View Article and Find Full Text PDF

With this work we would like to emphasize the necessity of steric repulsion to stabilize novel ionic liquid-based ferrofluids. For this purpose, we prepared a suspension of magnetite nanoparticles coated with a double layer of oleic acid, dispersed in 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO(4)]). For comparison, a suspension of bare magnetite nanoparticles in [EMIM][EtSO(4)] was also prepared.

View Article and Find Full Text PDF

This work deals with the role of nonmagnetic interactions on the magnetorheological (MR) response of suspensions of magnetic particles in nonaqueous carriers (MR fluids). Although electrostatic interactions between particles are negligible, van der Waals and, eventually, polar forces might be present. Nevertheless, they are typically neglected when compared to magnetic or hydrodynamic ones.

View Article and Find Full Text PDF
Article Synopsis
  • * Measurements were taken on magnetization, sedimentation, and redispersion behaviors based on different clay concentrations using optical and rheological methods.
  • * Results indicated that clay enhances the stability of the iron suspensions while maintaining their magnetorheological properties through mechanisms like clay gel formation and iron-clay adhesion.
View Article and Find Full Text PDF