Cholera remains a global public health threat in regions where social vulnerabilities intersect with climate and weather processes that impact infectious Vibrio cholerae. While access to safe drinking water and sanitation facilities limit cholera outbreaks, sheer cost of building such infrastructure limits the ability to safeguard the population. Here, using Yemen as an example where cholera outbreak was reported in 2016, we show how predictive abilities for forecasting risk, employing sociodemographical, microbiological, and climate information of cholera, can aid in combating disease outbreak.
View Article and Find Full Text PDFThe complexity of transmission of COVID-19 in the human population cannot be overstated. Although major transmission routes of COVID-19 remain as human-to-human interactions, understanding the possible role of climatic and weather processes in accelerating such interactions is still a challenge. The majority of studies on the transmission of this disease have suggested a positive association between a decrease in ambient air temperature and an increase in human cases.
View Article and Find Full Text PDF