The one-dimensional cutting-stock problem (1D-CSP) consists of obtaining a set of items of different lengths from stocks of one or different lengths, where the minimization of waste is one of the main objectives to be achieved. This problem arises in several industries like wood, glass, and paper, among others similar. Different approaches have been designed to deal with this problem ranging from exact algorithms to hybrid methods of heuristics or metaheuristics.
View Article and Find Full Text PDFThe Flexible Job Shop Scheduling Problem (FJSP) is a combinatorial problem that continues to be studied extensively due to its practical implications in manufacturing systems and emerging new variants, in order to model and optimize more complex situations that reflect the current needs of the industry better. This work presents a new metaheuristic algorithm called the global-local neighborhood search algorithm (GLNSA), in which the neighborhood concepts of a cellular automaton are used, so that a set of leading solutions called smart-cells generates and shares information that helps to optimize instances of the FJSP. The GLNSA algorithm is accompanied by a tabu search that implements a simplified version of the Nopt1 neighborhood defined in Mastrolilli & Gambardella (2000) to complement the optimization task.
View Article and Find Full Text PDFThis article finds feasible solutions to the travelling salesman problem, obtaining the route with the shortest distance to visit n cities just once, returning to the starting city. The problem addressed is clustering the cities, then using the NEH heuristic, which provides an initial solution that is refined using a modification of the metaheuristic Multi-Restart Iterated Local Search MRSILS; finally, clusters are joined to end the route with the minimum distance to the travelling salesman problem. The contribution of this research is the use of the metaheuristic MRSILS, that in our knowledge had not been used to solve the travelling salesman problem using clusters.
View Article and Find Full Text PDFA two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior.
View Article and Find Full Text PDF