Publications by authors named "Juan Carlos Pozo"

Plant growth and development involve the specification and regeneration of stem cell niches (SCNs). Although plants are exposed to disparate environmental conditions, how environmental cues affect developmental programs and stem cells is not well understood. Root stem cells are accommodated in meristems in SCNs around the quiescent center (QC), which maintains their activity.

View Article and Find Full Text PDF

Background: The primary aim of our study was to investigate the association between intubation timing and hospital mortality in critically ill patients with coronavirus disease 2019 (COVID-19)-associated respiratory failure. We also analysed both the impact of such timing throughout the first four pandemic waves and the influence of prior noninvasive respiratory support on outcomes.

Methods: This is a secondary analysis of a multicentre, observational and prospective cohort study that included all consecutive patients undergoing invasive mechanical ventilation due to COVID-19 from across 58 Spanish intensive care units (ICUs) participating in the CIBERESUCICOVID project.

View Article and Find Full Text PDF

In , the root clock regulates the spacing of lateral organs along the primary root through oscillating gene expression. The core molecular mechanism that drives the root clock periodicity and how it is modified by exogenous cues such as auxin and gravity remain unknown. We identified the key elements of the oscillator (AUXIN RESPONSE FACTOR 7, its auxin-sensitive inhibitor IAA18/POTENT, and auxin) that form a negative regulatory loop circuit in the oscillation zone.

View Article and Find Full Text PDF

Carbapenemase-producing and specifically carbapenemase (KPC)-producing (KPC-Kp) are rapidly spreading worldwide. The prognosis of ventilator-associated pneumonia (VAP) caused by KPC-Kp is not well known. Our study tries to assess whether ventilator-associated pneumonia caused by a KPC-Kp strain is associated with higher all-cause mortality than that caused by carbapenem-susceptible isolates.

View Article and Find Full Text PDF

Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined.

View Article and Find Full Text PDF

Spermidine is a polyamine present in eukaryotes with essential functions in protein synthesis. At high concentrations spermidine and norspermidine inhibit growth by unknown mechanisms. Transcriptomic analysis of the effect of norspermidine on the plant Arabidopsis thaliana indicates upregulation of the response to heat stress and denatured proteins.

View Article and Find Full Text PDF

Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12.

View Article and Find Full Text PDF

Ceftazidime-avibactam (CAZ-AVI) is a recently approved β-lactam-β-lactamase inhibitor combination with the potential to treat serious infections caused by carbapenem-resistant organisms. Few patients with such infections were included in the CAZ-AVI clinical trials, and clinical experience is lacking. We present a case series of patients with infections caused by carbapenem-resistant Enterobacteriaceae (CRE) or Pseudomonas aeruginosa (CRPa) who were treated with CAZ-AVI salvage therapy on a compassionate-use basis.

View Article and Find Full Text PDF

Targeted prophylaxis has proven to be an efficient strategy in liver transplantation recipients (LTRs). The aim of this study was to compare the effectiveness and safety of caspofungin with that of fluconazole in high-risk (HR) LTRs. Caspofungin and fluconazole were compared in a multicenter, retrospective, cohort study in HR-LTRs in Spain.

View Article and Find Full Text PDF

Polyploidy is a common event in plants that involves the acquisition of more than two complete sets of chromosomes. Allopolyploidy originates from interspecies hybrids while autopolyploidy originates from intraspecies whole genome duplication (WGD) events. In spite of inconveniences derived from chromosomic rearrangement during polyploidization, natural plant polyploids species often exhibit improved growth vigour and adaptation to adverse environments, conferring evolutionary advantages.

View Article and Find Full Text PDF

Food allergies to hazelnut represent an important health problem in industrialized countries because of their high prevalence and severity. Food allergenicity can be changed by several processing procedures since food proteins may undergo modifications which could alter immunoreactivity. High-hydrostatic pressure (HHP) is an emerging processing technology used to develop novel and high-quality foods.

View Article and Find Full Text PDF

Background: Current medical knowledge lacks specific information regarding creatine kinase (CK) elevation in influenza A pH1N1 (2009) infection.

Objectives: Primary endpoints were correlation between CK at intensive care unit (ICU) admission and ICU mortality. Secondary endpoints were ICU length of stay (LOS), mechanical ventilation (MV), and requirement of renal replacement techniques (RRT).

View Article and Find Full Text PDF

Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known.

View Article and Find Full Text PDF

Recently, it has been shown that plants contain homologs to the animal Polycomb repressive complex 1 (PRC1) components BMI1 and RING1A/B. In Arabidopsis, there are three BMI1-like genes, two of which, AtBMI1A and B, are required during post-embryonic plant growth to repress embryonic traits and allow cell differentiation. However, little is known about the third BMI1-like gene, AtBMI1C.

View Article and Find Full Text PDF

The present article is an update of the literature on invasive fungal infections caused by filamentous fungi in critically ill patients. A multidisciplinary group of Spanish physicians with an interest in these infections organized a joint session and selected the most important papers produced lately in the field. Each article was analyzed and discussed by one of the members of the panel.

View Article and Find Full Text PDF

Introduction: Little information exists about the impact of acute kidney injury (AKI) in critically ill patients with the pandemic 2009 influenza A (H1N1) virus infection.

Methods: We conducted a prospective, observational, multicenter study in 148 Spanish intensive care units (ICUs). Patients with chronic renal failure were excluded.

View Article and Find Full Text PDF

Objective: A large proportion of patients infected with 2009 influenza A(H1N1) (A[H1N1]) are obese. Obesity has been proposed as a risk factor influencing outcome in these patients. However, its role remains unclear.

View Article and Find Full Text PDF

In animals and fungi, a group of proteins called the cyclin-dependent kinase inhibitors play a key role in cell cycle regulation. However, comparatively little is known about the role of these proteins in plant cell cycle regulation. To gain insight into the mechanisms by which the plant cell cycle is regulated, we studied the cyclin-dependent kinase inhibitor KRP1 in Arabidopsis.

View Article and Find Full Text PDF

Cell type-specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase alpha of Arabidopsis thaliana.

View Article and Find Full Text PDF
Article Synopsis
  • The hemivenata-1 (hve-1) recessive allele in Arabidopsis thaliana results in simplistic leaf venation, increased shoot branching, and reduced fertility, similar to mutants with auxin signaling deficiencies.
  • Reduced sensitivity to external auxin was identified in the hve-1 mutant, which still responded normally to auxin transport inhibitors, indicating a unique defect in auxin signaling.
  • The HVE gene was found to encode a CAND1 protein, and its mutation causes splicing issues in the gene's transcripts, linking it to altered leaf vein patterns and suggesting that the HVE/CAND1 gene is crucial for proper auxin-mediated leaf venation.
View Article and Find Full Text PDF

Selective ubiquitin-mediated proteolysis through the cell cycle controls the availability, and therefore the activity, of several cell proliferation proteins. E2F transcription factors play distinct roles in both proliferating and differentiated cells by regulating gene expression. Here, we report that Arabidopsis AtE2Fc is regulated by a balance between gene expression and ubiquitin-proteasome proteolysis.

View Article and Find Full Text PDF