Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a widely used algorithm for exploratory clustering applications. Despite the DBSCAN algorithm being considered an unsupervised pattern recognition method, it has two parameters that must be tuned prior to the clustering process in order to reduce uncertainties, the minimum number of points in a clustering segmentation MinPts, and the radii around selected points from a specific dataset Eps. This article presents the performance of a clustering hybrid algorithm for automatically grouping datasets into a two-dimensional space using the well-known algorithm DBSCAN.
View Article and Find Full Text PDF