Publications by authors named "Juan Carlos Gomora"

This review focuses on the expression and function of voltage-gated sodium channel subtype Na1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented.

View Article and Find Full Text PDF

During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors.

View Article and Find Full Text PDF

Our results from quantitative RT-PCR, Western blotting, immunohistochemistry, and the tissue microarray of medullary thyroid cancer (MTC) cell lines and patient specimens confirm that VGSC subtype Na1.7 is uniquely expressed in aggressive MTC and not expressed in normal thyroid cells and tissues. We establish the druggability of Na1.

View Article and Find Full Text PDF

Mitochondrial activity and quality control are essential for neuronal homeostasis as neurons rely on glucose oxidative metabolism. The ketone body, D-β-hydroxybutyrate (D-BHB), is metabolized to acetyl-CoA in brain mitochondria and used as an energy fuel alternative to glucose. We have previously reported that D-BHB sustains ATP production and stimulates the autophagic flux under glucose deprivation in neurons; however, the effects of D-BHB on mitochondrial turnover under physiological conditions are still unknown.

View Article and Find Full Text PDF

Conotoxin sr5a had previously been identified in the vermivorous cone snail Conus spurius. This conotoxin is a highly hydrophobic peptide, with the sequence IINWCCLIFYQCC, which has a cysteine pattern "CC-CC" belonging to the T-1 superfamily. It is well known that this superfamily binds to molecular targets such as calcium channels, G protein-coupled receptors (GPCR), and neuronal nicotinic acetylcholine receptors (nAChR) and exerts an effect mainly in the central nervous system.

View Article and Find Full Text PDF

Voltage-gated sodium (Na) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both and , whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes Na channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing Na-inhibitors or developing new pharmacological and nutritional interventions.

View Article and Find Full Text PDF

Amino acid-derived isoindolines are synthetic compounds that were created with the idea of investigating their biological actions. The amino acid moiety was included on the grounds that it may help to avoid toxic effects. Recently, the isoindoline MDIMP was shown to inhibit both cardiac excitation-contraction coupling and voltage-dependent calcium channels.

View Article and Find Full Text PDF

Background: Voltage-gated sodium (Na) channels are heteromeric proteins consisting of a single pore forming α-subunit associated with one or two auxiliary β-subunits. These channels are classically known for being responsible of action potential generation and propagation in excitable cells; but lately they have been reported as widely expressed and regulated in several human cancer types. We have previously demonstrated the overexpression of Na1.

View Article and Find Full Text PDF

Objective: Low voltage-activated (LVA) calcium channels are crucial for regulating oscillatory behavior in several types of neurons and other excitable cells. LVA channels dysfunction has been implicated in epilepsy, neuropathic pain, cancer, among other diseases. Unlike for High Voltage-Activated (HVA) channels, voltage-dependence and kinetics of currents carried by recombinant LVA, i.

View Article and Find Full Text PDF

Voltage-gated sodium (Na) channels have been related with cell migration and invasiveness in human cancers. We previously reported the contribution of Na1.6 channels activity with the invasion capacity of cervical cancer (CeCa) positive to Human Papilloma Virus type 16 (HPV16), which accounts for 50% of all CeCa cases.

View Article and Find Full Text PDF

Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.

View Article and Find Full Text PDF

The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, involved in mitosis, is upregulated in cervical cancer (CC). We investigated CDKN3 mRNA as a survival biomarker and potential therapeutic target for CC. CDKN3 mRNA was measured in 134 CC and 25 controls by quantitative PCR.

View Article and Find Full Text PDF

Growth factors and hormones have both short- and long-term regulatory effects on the functional expression of voltage gated Ca2+ (CaV) channels. In particular, it has been reported that chronic treatment with insulin upregulates T-type channel membrane expression, leading to an increase in current density in clonal pituitary GH3 cells. Though this regulatory action may result from alterations in gene expression, recent studies have demonstrated also that endosomal trafficking provides a mechanism for dynamic changes in CaV channel membrane density.

View Article and Find Full Text PDF

Voltage-gated calcium (Ca(V)) channels are transmembrane proteins that form Ca(2+)-selective pores gated by depolarization and are essential regulators of the intracellular Ca(2+) concentration. By providing a pathway for rapid Ca(2+) influx, Ca(V) channels couple membrane depolarization to a wide array of cellular responses including neurotransmission, muscle contraction and gene expression. Ca(V) channels fall into two major classes, low voltage-activated (LVA) and high voltage-activated (HVA).

View Article and Find Full Text PDF

Ether à go-go (EAG) potassium channels possess oncogenic properties and have gained great interest as research tools for cancer detection and therapy. Besides, EAG electrophysiological properties are regulated through the cell cycle and determined by cytoskeletal interactions. Thus, because of the pivotal role of extracellular matrix (ECM) and cytoskeleton in cancer progression, we studied the effect of ECM components on adhesion, viability, actin organization and EAG currents in wild-type CHO cells (CHO-wt) and cells expressing human EAG channels (CHO-hEAG).

View Article and Find Full Text PDF

Cervical cancer (CaC) is the third most frequent cause of death from cancer among women in the world and the first in females of developing countries. Several ion channels are upregulated in cancer, actually potassium channels have been suggested as tumor markers and therapeutic targets for CaC. Voltage-gated sodium channels (VGSC) activity is involved in proliferation, motility, and invasion of prostate and breast cancer cells; however, the participation of this type of channels in CaC has not been explored.

View Article and Find Full Text PDF

The mechanism by which Ca2+ enters electrically non-excitable cells is unclear. The sensitivity of the Ca2+ entry pathway in electrically non-excitable cells to inhibition by extracellular Ni2+ was used to direct the synthesis of a library of simple, novel compounds. These novel compounds inhibit Ca2+ entry into and, consequently, proliferation of several cancer cell lines.

View Article and Find Full Text PDF

Numerous sperm functions including the acrosome reaction (AR) are associated with Ca(2+) influx through voltage-gated Ca(2+) (Ca(V)) channels. Although the electrophysiological characterization of Ca(2+) currents in mature sperm has proven difficult, functional studies have revealed the presence of low-threshold (Ca(V)3) channels in spermatogenic cells. However, the molecular identity of these proteins remains undefined.

View Article and Find Full Text PDF

In this study, ZD7288, a blocker of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, has been found to inhibit the mouse sperm acrosome reaction (AR). HCN channels have not yet been either recorded or implicated in mouse sperm AR, but low-threshold (T-type) Ca(2+) channels have. Interestingly, ZD7288 blocked native T-type Ca(2+) currents in mouse spermatogenic cells with an IC(50) of about 100 microM.

View Article and Find Full Text PDF

Molecular diversity in T-type Ca(2+) channels is produced by expression of three genes, and alternative splicing of those genes. Prompted by differences noted between rat and human Ca(v)3.3 sequences, we searched for splice variants.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully cloned the full-length human Ca(v)3.3 T-type calcium channel, discovering it has a longer structure than previously thought, including an additional exon that adds 214 amino acids.
  • The channel's properties were analyzed in human embryonic kidney cells, revealing it elicited inward currents at specific voltage thresholds, showing similarities to rat Ca(v)3.3 in activation and deactivation behaviors.
  • Notably, the full-length version produced double the current compared to truncated versions, indicating that the additional carboxyl terminus influences channel expression and activity, and that depolarizing prepulses can modulate its gating behavior.
View Article and Find Full Text PDF