Publications by authors named "Juan Carlos Garcia-Ramos"

Cancer treatments have harmful side effects, including genotoxic ones. Our previous research discovered that a specific silver nanoparticle (AgNPs) formulation could reduce the genotoxic effects of an alkylating agent, cyclophosphamide. This study aims to evaluate if this protective effect is observed against an antimetabolite anticancer agent, cytosine arabinoside (Ara-C).

View Article and Find Full Text PDF

Natural products (NP) have been an alternative therapy for several diseases for centuries, and they also serve as an essential source of bioactive molecules, enhancing our drug discovery capacity. Among these NP, some phytochemicals have shown multiple biological effects, including anticancer activity, with higher effectiveness and less toxicity than actual treatments, suggesting their possible use on resilient human malignancies such as leukemia. Imatinib mesylate (Im) is a selective tyrosine kinase inhibitor widely used as an anticancer drug, the gold standard to attend chronic myeloid leukemia (CML).

View Article and Find Full Text PDF

Amoebiasis is the second leading cause of death worldwide associated with parasitic disease and is becoming a critical health problem in low-income countries, urging new treatment alternatives. One of the most promising strategies is enhancing the redox imbalance within these susceptible parasites related to their limited antioxidant defense system. Metal-based drugs represent a perfect option due to their extraordinary capacity to stabilize different oxidation states and adopt diverse geometries, allowing their interaction with several molecular targets.

View Article and Find Full Text PDF

Nowadays, light-emitting diodes (LED) provide an alternative source to sunlight with specific intensity and wavelength that promotes plant growth. The features offered by LED could also stimulate the production of secondary metabolites of pharmaceutical interest. This work analyzed the cultivation of oregano (Lippia palmeri S.

View Article and Find Full Text PDF

Nanomaterials (NMs) solve specific problems with remarkable results in several industrial and scientific areas. Among NMs, silver nanoparticles (AgNPs) have been extensively employed as drug carriers, medical diagnostics, energy harvesting devices, sensors, lubricants, and bioremediation. Notably, they have shown excellent antimicrobial, anticancer, and antiviral properties in the biomedical field.

View Article and Find Full Text PDF

The hemolytic activity assay is a versatile tool for fast primary toxicity studies. This work presents a systematic study of the hemolytic properties of Argovit silver nanoparticles (AgNPs) extensively studied for biomedical applications. The results revealed an unusual and unexpected bell-shaped hemolysis curve for human healthy and diabetic donor erythrocytes.

View Article and Find Full Text PDF

Casiopeinas are a family of mixed chelate copper(II) complexes with antiproliferative and antineoplastic activities, results that have positioned them as an alternative for cancer treatment. Because DNA is one of their principal targets, it is of our interest to find out the effect of substituents on the diiamine ligands over mode of interaction. Therefore, we studied 21 Casiopeinas upon DNA by gel electrophoresis, UV-vis and circular dichroism (CD) spectroscopic techniques, previously studied by DFT calculations and Quantitative Structure-Activity Relationship (QSAR).

View Article and Find Full Text PDF

The global market for plant-derived bioactive compounds is growing significantly. The use of plant secondary metabolites has been reported to be used for the prevention of chronic diseases. Silver nanoparticles were used to analyze the content of enhancement phenolic compounds in carrots.

View Article and Find Full Text PDF

Halloysite clay nanotubes (HNTs) have been proposed as highly biocompatible for several biomedical applications. Various polymers have been used to functionalize HNTs, but scarce information exists about polystyrene for this purpose. This work evaluated polystyrene-functionalized HNTs (FHNTs) by comparing its effects with non-FHNTs and innocuous talc powder on and models.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have been studied worldwide for their potential biomedical applications. Specifically, they are proposed as a novel alternative for cancer treatment. However, the determination of their cytotoxic and genotoxic effects continues to limit their application.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) not only have shown remarkable results as antimicrobial and antiviral agents but also as antitumor agents. This work reports the complete characterization of five polyvinylpyrrolidone-coated AgNP (PVP-AgNP) formulations, their cytotoxic activity against human colon tumor cells (HCT-15), their cytotoxic effect on primary mouse cultures, and their lethal dose on BALB/c mice. The evaluated AgNP formulations have a composition within the ranges Ag: 1.

View Article and Find Full Text PDF

The use of nanomaterials is becoming increasingly widespread, leading to substantial research focused on nanomedicine. Nevertheless, the lack of complete toxicity profiles limits nanomaterials' uses, despite their remarkable diagnostic and therapeutic results on in vitro and in vivo models. Silver nanoparticles (AgNPs), particularly Argovit™, have shown microbicidal, virucidal, and antitumoral effects.

View Article and Find Full Text PDF

Nanomaterials quickly evolve to produce safe and effective biomedical alternatives, mainly silver nanoparticles (AgNPs). The AgNPs' antibacterial, antiviral, and antitumor properties convert them into a recurrent scaffold to produce new treatment options. This work reported the full characterization of a highly biocompatible protein-coated AgNPs formulation and their selective antitumor and amoebicidal activity.

View Article and Find Full Text PDF

Copper-containing compounds known as Casiopeı́nas are biologically active molecules which show promising antineoplastic effects against several cancer types. Two possible hypotheses regarding the mode of action of the Casiopeı́nas have emerged from the experimental evidence: the generation of reactive oxygen species or the ability of the compounds to bind and interact with nucleic acids. Using robust molecular dynamics simulations, we investigate the interaction of four different Casiopeı́nas with the DNA duplex d(GCACGAACGAACGAACGC).

View Article and Find Full Text PDF

Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products.

View Article and Find Full Text PDF

Since the beginning, natural products have represented an important source of bioactive molecules for cancer treatment. Among them, cardenolides attract the attention of different research groups due to their cardiotonic and antitumor activity. The observed biological activity is closely related to their Na/K-ATPase inhibition potency.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed.

View Article and Find Full Text PDF

Skin burns and ulcers are considered hard-to-heal wounds due to their high infection risk. For this reason, designing new options for wound dressings is a growing need. The objective of this work is to investigate the properties of poly (ε-caprolactone)/poly (vinyl-pyrrolidone) (PCL/PVP) microfibers produced via electrospinning along with sorbents loaded with Argovit™ silver nanoparticles (Ag-Si/AlO) as constituent components for composite wound dressings.

View Article and Find Full Text PDF

In this work, we present the synthesis, characterization, electrochemical studies, DFT calculations, and in vitro amoebicidal effect of seven new heteroleptic Ni coordination compounds. The crystal structures of [H(pdto)](NO) and [Ni(pdto)(NO)]PF are presented, pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine. The rest of the compounds have general formulae: [Ni(pdto)(NN)](PF) where N-N = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (44dmbpy), 5,5'-dimethyl-2,2'-bipyridine (55dmbpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (47dmphen) and 5,6-dimethyl-1,10-phenanthroline (56dmphen).

View Article and Find Full Text PDF

Nowadays, Huanglongbing (HLB) disease, commonly known as "yellow dragon disease", affects citrus crops worldwide and has a devastating effect in the agro-industrial sector. Significant efforts have been made to fight the illness, but still, there is no effective treatment to eradicate the disease. This work is the first approach to evaluate the capacity of silver nanoparticles (AgNPs) to directly eradicate the bacteria responsible for Huanglongbing disease, Liberibacter asiaticus (CLas), in the field.

View Article and Find Full Text PDF

The continuous use of compounds contained in commodities such as processed food, medicines, and pesticides, demands safety measures, in particular, for those in direct contact with humans and the environment. Safety measures have evolved and regulations are now in place around the globe. In the case of pesticides, attempts have been made to use toxicological data to inform of potentially harmful compounds either across species, on different routes of exposure, or entirely new chemicals.

View Article and Find Full Text PDF

Giardiasis is a widespread illness that affects inhabitants of underdeveloped countries, being children and seniors the highest risk population. The several adverse effects produced by current therapies besides its increasing ineffectiveness due to the appearance of resistant strains evidence the urgent need for new therapeutic approaches. We present the antigiardiasic effect of eight Cu(II) coordination compounds, which belong to the family Casiopeínas.

View Article and Find Full Text PDF

The global aquaculture has shown an impressive growth in the last decades contributing with a major part of total food fish supply. However, it also helps in the spread of diseases that in turn, causes great economic losses. The White Spot Syndrome Virus (WSSV) is one of the major viral pathogen for the shrimp aquaculture industry.

View Article and Find Full Text PDF

Worldwide demands of lead to finding new options to produce large-scale and contaminant-free crops. Particularly, the Mexican Government has classified at risk and it subject to protection programs since wild species are in danger of extinction and no more than 30 clones have been found. Nanotechnology could help to solve both demands and genetic variability, but toxicological concerns must be solved.

View Article and Find Full Text PDF

In this work we report a series of Cu(II) complexes [Cu(N-N)(X)], (N-N=substituted 1,10-phenanthroline derivatives and X=Cl or NO), with tunable E for electrochemical reduction [Cu(N-N)(X)]+1e⇌[Cu(N-N)]+X. The disproportion of O was explored in presence of the electro-generated species [Cu(N-N)] using cyclic voltammetry in a non-aqueous media, arising a new simple method to propose a SOD-like mechanism, which can be used as a quick guide test for a compound, before being proven in biological assays. It was found that complexes with high negative half wave potential values (E) for Cu(II)/Cu(I) couple shown a current increment for oxygen reduction, related to the capability of the disproportion of this reactive oxygen species.

View Article and Find Full Text PDF