Publications by authors named "Juan Carlos Garcia Canaveras"

Immune checkpoint inhibitors (ICI) therapy with or without chemotherapy has been established as the first-line treatment for patients with non-oncogene addicted advanced Non-Small Cell Lung Cancer (NSCLC). Yet some clinical settings, such as the treatment sequence in patients with brain metastases, have barely been evidenced. Although ICIs cannot directly cross the blood-brain barrier (BBB), evidence suggests that BBB damage could allow ICIs into the central nervous system, or that they can have an indirect effect on the tumor immune microenvironment (TIME) and cause an anti-tumor response.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) enable muscle growth and regeneration after exercise or injury, but how metabolism controls their regenerative potential is poorly understood. We describe that primary metabolic changes can determine murine MuSC fate decisions. We found that glutamine anaplerosis into the tricarboxylic acid (TCA) cycle decreases during MuSC differentiation and coincides with decreased expression of the mitochondrial glutamate deaminase GLUD1.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is one of the world's leading causes of morbidity and mortality. ICIs alone or combined with chemotherapy have become the standard first-line treatment of metastatic NSCLC. The impressive results obtained have stimulated our interest in applying these therapies in early disease stage treatments, as neoadjuvant immunotherapy has shown promising results.

View Article and Find Full Text PDF

Motivation: LipidMS was initially envisioned to use fragmentation rules and data-independent acquisition (DIA) for lipid annotation. However, data-dependent acquisition (DDA) remains the most widespread acquisition mode for untargeted LC-MS/MS-based lipidomics. Here, we present LipidMS 3.

View Article and Find Full Text PDF

Metabolic rewiring and mitochondrial dynamics remodelling are hallmarks of cell reprogramming, but the roles of the reprogramming factors in these changes are not fully understood. Here we show that c-MYC induces biosynthesis of fatty acids and increases the rate of pentose phosphate pathway. Time-course profiling of fatty acids and complex lipids during cell reprogramming using lipidomics revealed a profound remodelling of the lipid content, as well as the saturation and length of their acyl chains, in a c-MYC-dependent manner.

View Article and Find Full Text PDF

Metabolomics has become an invaluable tool for both studying metabolism and biomarker discovery. The great technical advances in analytical chemistry and bioinformatics have considerably increased the number of measurable metabolites, yet an important part of the human metabolome remains uncovered. Among the various MS hyphenated techniques available, LC-MS stands out as the most used.

View Article and Find Full Text PDF

Effective chimeric antigen receptor (CAR)-T cell therapy is dependent on optimal cell culture methods conducive to the activation and expansion of T cells , as well as infection with CAR. Media formulations used in CAR-T cell manufacturing have not been optimized for gene delivery, cell expansion, and overall potency. Bioactive components and derivatives that support the generation of functionally-competent T cell progeny with long-lasting persistence are largely undefined.

View Article and Find Full Text PDF

Progression on therapy in non-small cell lung carcinoma (NSCLC) is often evaluated radiographically, however, image-based evaluation of said therapies may not distinguish disease progression due to intrinsic tumor drug resistance or inefficient tumor penetration of the drugs. Here we report that the inhibition of mutated promotes the secretion of a potent vasoconstrictor, endothelin-1 (EDN1), which continues to increase as the cells become resistant with a mesenchymal phenotype. As EDN1 and its receptor (EDNR) is linked to cancer progression, EDNR-antagonists have been evaluated in several clinical trials with disappointing results.

View Article and Find Full Text PDF

NADH provides electrons for aerobic ATP production. In cells deprived of oxygen or with impaired electron transport chain activity, NADH accumulation can be toxic. To minimize such toxicity, elevated NADH inhibits the classical NADH-producing pathways: glucose, glutamine, and fat oxidation.

View Article and Find Full Text PDF

Activated CD4 T cells proliferate rapidly and remodel epigenetically before exiting the cell cycle and engaging acquired effector functions. Metabolic reprogramming from the naive state is required throughout these phases of activation. In CD4 T cells, T-cell-receptor ligation-along with co-stimulatory and cytokine signals-induces a glycolytic anabolic program that is required for biomass generation, rapid proliferation and effector function.

View Article and Find Full Text PDF

High resolution LC-MS untargeted lipidomics using data independent acquisition (DIA) has the potential to increase lipidome coverage, as it enables the continuous and unbiased acquisition of all eluting ions. However, the loss of the link between the precursor and the product ions combined with the high dimensionality of DIA data sets hinder accurate feature annotation. Here, we present LipidMS, an R package aimed to confidently identify lipid species in untargeted LC-DIA-MS.

View Article and Find Full Text PDF

Characterization of chromatographic columns using the traditional van Deemter method is limited by the necessity of calculating extra-column variance, issue particularly relevant when modeling asymmetrical peaks eluted from monolithic columns. A novel R package that implements Parabolic Variance Modified Gaussian approach for accurate peak modeling, van Deemter equation and two alternatives approaches, based on van Deemter, has been developed to calculate the height equivalent to a theoretical plate (HETP). To assess package capabilities conventional packed reverse-phase and monolithic HPLC columns were characterized.

View Article and Find Full Text PDF

Phospholipidosis and steatosis are two toxic effects, which course with overaccumulation of different classes of lipids in the liver. MS-based lipidomics has become a powerful tool for the comprehensive determination of lipids. LC-MS lipid profiling of HepG2 cells is proposed as an in vitro assay to study and anticipate phospholipidosis and steatosis.

View Article and Find Full Text PDF

In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity.

View Article and Find Full Text PDF

MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis.

View Article and Find Full Text PDF

Hepatotoxicity is the number one cause for agencies not approving and withdrawing drugs for the market. Drug-induced human hepatotoxicity frequently goes undetected in preclinical safety evaluations using animal models. Human-derived in vitro models represent a common alternative to in vivo tests to detect toxic effects during preclinical testing.

View Article and Find Full Text PDF

Currently, there is increasing interest in developing accurate methods for the quantitative analysis of bile acids (BAs) in biological samples. We have developed a sensitive, fast, and reproducible UPLC-MRM-MS method for BA profiling in serum, liver tissue, or cultured cells of different species (human, rat, and mouse). This method, validated according to FDA guidelines, allows the quantification of 12 non-conjugated, 8 glycine-conjugated, and 11 taurine-conjugated BAs, using 5 additional deuterated BAs as internal standards in a single analytical run.

View Article and Find Full Text PDF

Multiple analytical methods are required to comprehensively assess oxidative homeostasis and specific damage to macromolecules. Our aim was to develop a straightforward strategy for the fast assessment of global oxidative status and specific damage to DNA, proteins, and lipids. To this end, an analytical method, based on ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS/MS), was developed and validated for the quantification of 16 oxidative stress (OS) biomarkers.

View Article and Find Full Text PDF