Publications by authors named "Juan Carlos Biancotti"

Mammalian cells have evolved to function under Earth's gravity, but how they respond to microgravity remains largely unknown. Neural stem cells (NSCs) are essential for the maintenance of central nervous system (CNS) functions during development and the regeneration of all CNS cell populations. Here, we examined the behavior of space (SPC)-flown NSCs as they readapted to Earth's gravity.

View Article and Find Full Text PDF

The change in gravitational force has a significant effect on biological tissues and the entire organism. As with any alteration in the environment, microgravity (µG) produces modifications in the system inducing adaptation to the new condition. In this study, we analyzed the effect of µG on neural stem cells (NSCs) following a space flight to the International Space Station (ISS).

View Article and Find Full Text PDF

Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling.

View Article and Find Full Text PDF

Down syndrome (DS) is the leading genetic cause of mental retardation and is caused by a third copy of human chromosome 21. The different pathologies of DS involve many tissues with a distinct array of neural phenotypes. Here we characterize embryonic stem cell lines with DS (DS-ESCs), and focus on the neural aspects of the disease.

View Article and Find Full Text PDF

Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling.

View Article and Find Full Text PDF

Staphylococcus aureus is a leading cause of skin and soft-tissue infections worldwide. Mice are the most commonly used animals for modeling human staphylococcal infections. However a supra-physiologic S.

View Article and Find Full Text PDF

Teratoma formation is the gold standard assay for testing the capacity of human pluripotent stem cells to differentiate into all embryonic germ layers. Although widely used, little effort has been made to transform this qualitative assay into a quantitative one. Using gene expression data from a wide variety of cells, we created a scorecard representing tissues from all germ layers and extraembryonic tissues.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) tend to acquire genomic aberrations in culture, the most common of which is trisomy of chromosome 12. Here we dissect the cellular and molecular implications of this trisomy in hPSCs. Global gene expression analyses reveal that trisomy 12 profoundly affects the gene expression profile of hPSCs, inducing a transcriptional programme similar to that of germ cell tumours.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood.

View Article and Find Full Text PDF

Chromosomal aneuploidies are responsible for severe human genetic diseases. Aiming at creating models for such disorders, we have generated human embryonic stem cell (hESC) lines from pre-implantation genetic screened (PGS) embryos. The overall analysis of more than 400 aneuploid PGS embryos showed a similar risk of occurrence of monosomy or trisomy for any specific chromosome.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) are an invaluable cell source to study human embryogenesis and development and for exploring the nature of human diseases. Moreover, hESCs can serve as an unlimited source of cells for cell therapy. The first hESC lines were derived from frozen blastocyst-stage embryos.

View Article and Find Full Text PDF

The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups.

View Article and Find Full Text PDF

Chromosomal aneuploidies are widely recognized genetic disorders in humans that often lead to spontaneous abortion. Aneuploid fetuses that survive to term commonly exhibit impaired developmental growth and mental retardation in addition to multiple congenital malformations. Preimplantation genetic screening is used to detect chromosomal aneuploidies in early embryos.

View Article and Find Full Text PDF

Because of their somatic cell origin, human induced pluripotent stem cells (HiPSCs) are assumed to carry a normal diploid genome, and adaptive chromosomal aberrations have not been fully evaluated. Here, we analyzed the chromosomal integrity of 66 HiPSC and 38 human embryonic stem cell (HESC) samples from 18 different studies by global gene expression meta-analysis. We report identification of a substantial number of cell lines carrying full and partial chromosomal aberrations, half of which were validated at the DNA level.

View Article and Find Full Text PDF

Syndromes caused by chromosomal aneuploidies are widely recognized genetic disorders in humans and often lead to spontaneous miscarriage. Preimplantation genetic screening is used to detect chromosomal aneuploidies in early embryos. Our aim was to derive aneuploid human embryonic stem cell (hESC) lines that may serve as models for human syndromes caused by aneuploidies.

View Article and Find Full Text PDF

Human embryonic stem cells are derived from the inner cell mass of pre-implantation embryos. The cells have unlimited proliferation potential and capacity to differentiate into the cells of the three germ layers. Human embryonic stem cells are used to study human embryogenesis and disease modeling and may in the future serve as cells for cell therapy and drug screening.

View Article and Find Full Text PDF

Loss of the oligodendrocyte (OL)-specific enzyme aspartoacylase (ASPA) from gene mutation results in the sponginess and loss of white matter (WM) in Canavan disease (CD). This study addresses the fate of OLs during the pathophysiology of CD in an adult ASPA knockout (KO) mouse strain. Massive arrays of neural stem/progenitor cells, immunopositive for PSA-NCAM, nestin, vimentin, and NG2, were observed within the severely affected spongy WM of the KO mouse brain.

View Article and Find Full Text PDF

In vivo remyelination promoted by a combination of four oligodendrocyte specific growth factors (GFs) in cuprizone-induced demyelinated mice brains was described recently by our group. Here we report activation of inflammatory response in mice brain following cuprizone-induced demyelination and its further enhancement immediately after injection of growth factors in vivo, while no significant inflammatory response was evident in GFs-injected normal brains. Cuprizone-induced demyelination was accompanied by increased expression of inflammatory cytokines, TNFalpha and IL-1beta, anti-inflammatory cytokines TGFbeta, IL-10 and increased levels of chemokines, CCL2, CCL5, and CXCL10, produced by resident microglia and astrocytes.

View Article and Find Full Text PDF

The postnatal forebrain subventricular zone (SVZ) harbors stem cells that give rise to olfactory bulb interneurons throughout life. The identity of stem cells in the adult SVZ has been extensively debated. Although, ependymal cells were once suggested to have stem cell characteristics, subsequent studies have challenged the initial report and postulated that subependymal GFAP(+) cells were the stem cells.

View Article and Find Full Text PDF

Loss of oligodendrocytes (OLs) is often associated with demyelination. PDGF-AA, bFGF, NT3 and IGF-1 are known to regulate OL proliferation, survival and/or differentiation. Following cuprizone-induced demyelination in mice a combination of above four growth factors (GF) was intracranially injected to stimulate remyelination in vivo.

View Article and Find Full Text PDF

Acrosin is an acrosomal protease synthesized as a proenzyme and activated into beta-acrosin during the acrosome reaction. In the present study, a set of sensitive assays was developed to identify the proacrosin/acrosin system and to evaluate its activation pattern in human sperm extracts. Immunocytochemical analysis with monoclonal antibody (Mab) AcrC5F10 showed specific staining on the acrosome of permeabilized ejaculated and capacitated spermatozoa.

View Article and Find Full Text PDF