Background: While numerous studies have described the transcriptomes of extracellular vesicles (EVs) in different cellular contexts, these efforts have typically relied on sequencing methods requiring RNA fragmentation, which limits interpretations on the integrity and isoform diversity of EV-targeted RNA populations. It has been assumed that mRNA signatures in EVs are likely to be fragmentation products of the cellular mRNA material, and the extent to which full-length mRNAs are present within EVs remains to be clarified.
Results: Using long-read nanopore RNA sequencing, we sought to characterize the full-length polyadenylated (poly-A) transcriptome of EVs released by human chronic myelogenous leukemia K562 cells.
Genetic perturbation assays have been crucial to the discovery of molecular pathways that drive diverse biological processes. RNA interference (RNAi)-mediated depletion of gene products represents a powerful means of elucidating gene function, as it allows one to systematically probe the phenotypic effects resulting from the functional loss of specific targets. The relative ease of use of RNAi technologies in cultured cells has allowed the design and implementation of genome-wide investigations to systematically reveal gene function.
View Article and Find Full Text PDFThe asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology.
View Article and Find Full Text PDFAeromonas caviae is an emerging human pathogen. Here, we report the draft genome sequence of Aeromonas caviae strain 429865 INP which shows the presence of various putative virulence-related genes.
View Article and Find Full Text PDF